Please use this identifier to cite or link to this item: https://essuir.sumdu.edu.ua/handle/123456789/90414
Or use following links to share this resource in social networks: Recommend this item
Title The Influence of Nanosized Active Particles of the Melt and the Electrode Surface on Charge Transfer Processes at the Electrode/Melt Interface
Other Titles Вплив нанорозмірних активних частинок розплаву та поверхні електрода на процеси перенесення заряду на межі розділу електрод/розплав
Authors Solianyk, L.O.
ORCID
Keywords міжфазна межа електрод/розплав
енергія реорганізації
енергія активації
гетерогенні реакції
Ab initio розрахунки
interfacial boundary electrode/melt
reorganization energy
activation energy
heterogeneous reactions
Ab initio calculations
Type Article
Date of Issue 2022
URI https://essuir.sumdu.edu.ua/handle/123456789/90414
Publisher Sumy State University
License In Copyright
Citation L.O. Solianyk, J. Nano- Electron. Phys. 14 No 6, 06030 (2022) DOI: https://doi.org/10.21272/jnep.14(6).06030
Abstract Методами квантової хімії з метою дослідження механізму електродних процесів на межі розділу електрод/розплав проведено розрахунки енергії реорганізації в рамках моделі провідних еліпсоїдів, яка узагальнює модель Маркуса на випадок, коли реагенти є, по суті, несферичними. Встановлено, що величина енергії реорганізації розчинника практично не змінюється на всіх інтервалах відстаней між поверхнею електрода і реагентом і суттєво зменшується зі збільшенням заряду реагенту. Розраховано значення енергії активації перенесення заряду на межі розділу електрод/розплав. Встановлено зменшення значень енергії активації перенесення заряду між поверхнею катода та частинками розплаву. Розраховано значення молекулярних орбітальних енергій для фрагмента поверхні електрода та активних комплексів модельних розплавів. На основі аналізу значень енергії активації та значень енергії найвищих зайнятих і найнижчих незаповнених молекулярних орбіталей взаємодіючих структур зроблено висновок про істотну роль катіонного складу електроліту в процесах електровідновлення на катоді. Аналіз отриманих теоретичних результатів дозволяє сформулювати умови виникнення поверхневої провідності діелектрика в сольовому розплаві. Було зроблено припущення, що підбір складу електроліту дозволяє контролювати швидкість окислювально-відновних реакцій на міжфазній межі електрод/розплав без попередньої металізації діелектрика: тобто цілеспрямована зміна катіонного складу розплаву дає змогу досягти збігу енергетичних рівнів поверхні електрода та активного комплексу, що дозволяє контролювати синтез наночастинок на катоді. Установлено, що в основі механізму електродних процесів на міжфазній межі електрод/розплав лежить зсув рівня Фермі кластера поверхні твердого тіла, рівність енергій граничних молекулярних орбіталей передреакційного комплексу і кластер, які є визначальними факторами гетерогенних окисно-відновних реак-цій на поверхні діелектрика, зануреного у відповідний іонний розплав.
By using methods of quantum chemistry, in order to study a mechanism of electrode processes at the electrode/melt interface, calculations of reorganization energy were made within a model of conductive ellipsoids, which generalizes the Marcus model for a case when reagents are substantially non-spheric. It was ascertained that a value of reorganization energy of a dissolvent hardly varies at all intervals of distances between an electrode surface and a reagent and decreases substantially with an increase in a reagent charge. The values of activation energy for charge transfer at the electrode/melt interface were calculated. A decrease in the values of activation energy for charge transfer between a cathode surface and particles of a melt was established. The values of molecular orbital energies were calculated for a fragment of an electrode surface and active complexes of model melts. Based on the analysis of activation energy values and values of energy of highest occupied and lowest unoccupied molecular orbitals of the interacting structures, a conclusion was made about the essential role of a cationic composition of an electrolyte in the processes of electroreduction at the cathode. The analysis of the obtained theoretical results allows us to formulate the conditions for the occurrence of surface conductivity of the dielectric in the salt melt. A presumption was made that a selection of an electrolyte composition allowed controlling the rate of redox reactions at the electrode/melt interface without prior metallization of the dielectric i.e., a targeted change in the cationic composition of a melt makes it possible to achieve concurrence of energy levels of the electrode surface and the active complex, thereby enabling control over the synthesis of nanoparticles at the cathode. It was established that the mechanism of electrode processes at the electrode/melt interface is based on a shift in the Fermi level of a cluster of a solid-state body surface as well as equality of energies of marginal molecular orbitals of a pre-reaction complex and a cluster, which are determining factors in heterogeneous redox reactions at the surface of a dielectric immersed in a corresponding ionic melt.
Appears in Collections: Журнал нано- та електронної фізики (Journal of nano- and electronic physics)

Views

China China
1051
Germany Germany
32
Ireland Ireland
18
Ukraine Ukraine
294
United Kingdom United Kingdom
118
United States United States
5131
Unknown Country Unknown Country
1

Downloads

China China
3616
Germany Germany
1
Japan Japan
1
Ukraine Ukraine
585
United States United States
6646

Files

File Size Format Downloads
Solianyk_jnep_6_2022.pdf 389,77 kB Adobe PDF 10849

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.