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Abstract: Polydopamine (PDA) is a new biocompatible material, which has prospects in biomedical
and sensor applications. Due to functional groups, it can host wide range of biomolecules. ZnO
nanostructures are well known templates for optical sensors and biosensors. The combination
of ZnO and PDA results in a change of optical properties of ZnO–PDA composites as a shift of
photoluminescence (PL) peaks and PL quenching. However, to date, the effect of the PDA layer on
fundamental properties of ZnO–PDA nanostructures has not been studied. The presented paper
reports on optical and surface properties of novel ZnO–PDA nanocomposites. PDA layers were
chemically synthesized on ZnO nanostructures from different solution concentrations of 0.3, 0.4, 0.5
and 0.7 mg/mL. Structure, electronic and optical properties were studied by SEM, Raman, FTIR,
diffuse reflectance and photoluminescence methods. The Z-potential of the samples was evaluated in
neutral pH (pH = 7.2). The response of the samples towards poly-l-lysine adsorption, as a model
molecule, was studied by PL spectroscopy to evaluate the correlation between optical and surface
properties. The role of the PDA concentration on fundamental properties was discussed.

Keywords: ZnO–polydopamine nanocomposites; fundamental properties; optical sensors

1. Introduction

Inorganic–organic core shell composite materials attract the attention of researchers due to their
optical, electrical and sensitive properties [1]. The organic shell on the inorganic core increases the
surface properties of the composite, by introducing active functional groups, additional absorption
and/or emission peaks. Tailored optical properties of the composites are important for possible
applications in sensors, optical coatings and photocatalysis [2].

Among the different inorganic and organic nanomaterials, a zinc oxide (ZnO) and polydopamine
(PDA) composition might have advanced optical properties. ZnO is a well known material with a
wide band gap and strong room temperature photoluminescence [3]. It is often used as a template in
sensor, coating and photocatalytic applications [4].
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PDA has prospects in biomedical applications due to its biocompatibility and proteins affinity.
Polydopamine is formed within the self-polymerization of dopamine in basic solution [5,6]. Thin layers
and nanoparticles of PDA could be formed with a controlled shape and properties [7–9], which have
been shown to be quite promising for photocatalysis, especially when combined with photoactive
nanomaterials [10]. In general, it is clear that the deposition time and concentration of dopamine define
the fundamental properties of PDA nanostructures [5,9].

Previously, it was shown that a PDA layer could be deposited on a ZnO surface by chemical
deposition to form ZnO/PDA nanocomposites [8,11–13]. PDA deposition resulted in a shift of the
band gap of ZnO and a change of photoluminescence peak position in ZnO/PDA nanostructures [6].
The investigation of the temperature and power dependences of ZnO and ZnO/PDA nanocomposites
were studied in the range of 77–300 K. Defect concentrations, quantum efficiency and activation energies
in ZnO and ZnO/PDA nanostructures were studied. It was shown that PDA deposition resulted in
a decrease in the defect concentrations in ZnO, particularly, oxygen vacancies from 1.5 × 1015 cm−3

to 1.2 × 1014 cm−3. As a result, the quantum efficiency of photoluminescence decreased from 0.28
to 0.12 for ZnO/PDA. PDA deposition resulted in the decreased activation energies in ZnO/PDA.
Exciton binding energy decreased from 0.053 to 0.044 eV in ZnO/PDA. The mechanism of the ZnO/PDA
interface formation was proposed. The main assumption was based on the fact that the PDA formed
a binding of hydroxyl groups with ZnO surface oxygen vacancies. As a result, the depletion layer
width in ZnO increased. This induced changes in the optical properties of the composites (quenching
of photoluminescence (PL), decrease in activation energies, etc.).

In spite of the reported achievements, the role of the PDA layer in the optical properties of ZnO in
ZnO/PDA nanocomposites is not fully understood yet. Particularly, the effect of PDA concentration on
optical properties of the composites at fixed deposition time has not been studied yet. Therefore, in the
present paper, we report on the investigation of the structural, electronic and optical properties of
ZnO/PDA, where the PDA layer was formed at different concentrations of initial precursors. The role of
PDA layer fabrication conditions in tailoring the optical properties and surface properties of ZnO/PDA
will be discussed.

2. Materials and Methods

2.1. Materials

Zinc acetate dehydrate, hexamethylenetetramine, 2-propanol (IPA), ethanolamine, sodium
sulphate, zinc nitrate hexahydrate 0.1% (w/v) and poly-L-lysine solution in H2O were obtained
from Sigma Aldrich (Riga, Latvia), dopamine hydrochloride 99%, and tris(hydroxmethyl)amino-
methane 99% were purchased from Alfa Aesar (Poland), and were used without additional purification.
The glass substrates (10 mm × 10 mm) were cleaned by successive sonication with deionized water and
isopropyl alcohol for 10 min, with proper drying prior to the final use. The oxygen plasma treatment
for 15 min was performed in order to eliminate organic traces.

2.2. Fabrication of ZnO Nanorods

ZnO nanorods (ZnONRs) were deposited by hydro- thermochemical method as described in
Viter et al. [14,15]. The initial ZnO seed layer was prepared on glass by the drop casting of 20 mL
of 1 mg mL−1 zinc acetate methanol solution, followed by annealing at 350 ◦C for 1 h. The glass
substrates with ZnO seed layers were incubated for 4 h in 50 mM of zinc nitrate and 50 mM of
hexamethylenetetramine containing solution in water at 95 ◦C. A hydrothermal growth of ZnONRs
was performed. The samples were washed by deionized water and dried at room temperature.

2.3. Forming of a PDA Layer Over ZnO-NR

As deposited glass substrates (size 10 × 10 mm2) with ZnONRs were immersed into a Tris buffer
(10 mM, pH 8.5, 50 mL) with various dopamine concentrations in the range of 0.3–0.7 mg mL−1 at
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room temperature for a deposition time of 2 h, unless stated otherwise. In the next step, the samples
were removed and rinsed with Milli-Q water and dried with nitrogen (N2) stream.

2.4. Characterization

The structural properties of the ZnONRs–PDA nanostructures were investigated by XRD
(PANAlytical Xpert-PRO diffractometer equipped with a Pixel 3D detector using Ni-filtered Cu
Kα radiation 45 kV/40 mA), SEM (Zeiss Evo HD15 SEM from Zeiss Ltd. (Jena, Germany)), HR-TEM
(JEOL ARM 200F) high-resolution transmission electron microscope (200 kV) with an EDX and
EELS detector, Raman scattering measurements were performed using a Renishaw micro-Raman
spectrometer equipped with a confocal microscope (Leica) and FTIR spectroscopy, using a FTIR-ATR
spectrophotometer ‘Frontier’ from Perkin Elmer (Waltham, MA, USA). Optical properties were studied
by diffuse reflectance spectroscopy, using a UV–Vis light source, integrating sphere, HR2000+ fiber
spectrometer from Ocean Optics (Dunedin, FL, USA) and room temperature photoluminescence
spectroscopy (325 nm LED, output power 5 mw, Roithner, Austria). For the z-potential measurements,
pristine ZnO and ZnO–PDA samples were dispersed in deionized water and were then measured at
pH = 6.5 with by the Zetasizer Nano ZS (Malvern, Panalytical).

3. Results

The morphology of pristine ZnONR and produced ZnO–PDA samples was investigated by TEM
and SEM. Figure 1a demonstrates the typical SEM image of ZnONR on the glass substrate. As is clearly
seen, ZnONRs are uniformly distributed over the surface. The average length of ZnONRs is in the
range of 200–600 nm and approximately 60 ± 10 nm in diameter (Figure 1b). TEM images of ZnO–PDA
showed a clear indication of PDA coating (an average thickness of about 3–5 nm) over ZnONRs
(Figure 1c–f), thereby confirming the formation of ZnO–PDA core-shell nanostructures. However, it is
seen that the conformality of the PDA layer depends on the dopamine concentration. One may observe
the non-uniform PDA layer for a low-concentrated dopamine solution (Figure 1d). Meanwhile, the
conformal and uniform PDA layer is observed for the samples produced at high concentrations of
dopamine (Figure 1f). It is well known that the PDA layer thickness depends on the time [6]. However,
the concentration might affect the polymerization speed and other dynamics of the layer deposition.
This might suggest that the “high” concentration was the ideal for the polymerization of the PDA layer
on ZnONR.

In order to determine the composition of the produced nanocomposites, Raman spectroscopy,
as a very sensitive method, was also used [16]. The Raman spectra of ZnO and ZnO–PDA nanorods
are shown in Figure 2. As prepared ZnONRs showed peaks at 333, 376, and 435 cm−1, related
to E2(high)–E2(low) mode, A1(TO) polar optical phonon mode, and E2 (high) non-polar mode,
respectively [17]. The observed peak at 435 cm−1 (E2 high mode) corresponds to the wurtzite phase
of ZnO, as was also confirmed by XRD. This mode is associated with a vibration of oxygen atoms
in the crystal lattice. A Raman peak at 586 cm−1 could be related to structural disorders (such as
oxygen vacancies, Zn interstitial, etc.) [18]. ZnO–PDA nanostructures showed peaks at 467, 541, 734,
954, 1183, 1334, 1391, 1478, 1559 cm−1. Peaks at 468 cm−1 and 954 cm−1 correspond to Zn–OH and
O−H out-of-plane deformation mode. The peak at 541 cm−1 corresponds to the defect surface mode of
ZnO [19]. Raman peaks at 1183, 1334, 1391, 1478, 1559 cm−1 corresponding to PDA [20]. According to
the PDA Raman peak positions, as reported earlier, we can consider that peaks, located at 1181 cm−1

are C–OH phenolic stretching or the stretching of the catechol C–O bond, 1341 and 1393 cm−1 are the
aromatic C–N stretching mode of the indole structure, 1478 and 1559 cm−1, correspond to C=C and
C–C vibrations, respectively. The increase in the PDA concentration does not show a significant effect
on the vibration energies.
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Figure 1. (a) The SEM and (b) the TEM images of pristine ZnONR; (c) the TEM images of a separate
ZnO/polydopamine (PDA) nanorod (0.5 mg/mL) and HRTEM images of ZnO/PDA nanorods (NRs) at
(d) 0.3, (e) 0.5 and (f) 0.7 mg/mL.
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Figure 2. Raman spectra of ZnO with different PDA concentrations. ZnO spectra multiplied by a factor
of 40.

Wide peaks at 466 and 1596 cm−1 were deconvoluted by two components via Lorentzian fitting
and showing the following values: 457, 482, 1525 and 1596 cm−1. The analysis showed the good
correspondence of the present peaks—1206, 1528 and 1595, and 1386 cm−1 to the PDA Raman modes,
which related to C–OH or/and C–O, C=C, C–N, N–H and C=O vibrations, respectively [20].

The peak at 457 cm−1 relates to ZnO, whereas peaks at 482 and 954 cm−1 correspond to Zn–OH
and O−H out-of-plane deformation mode. The increase in the PDA concentration does not show a
significant effect on the vibration energies.

FTIR spectra of the ZnO and ZnO–PDA nanorods are shown in Figure 3. As deposited ZnO
nanorods had a specific peak at 400 cm−1 and a shoulder at 560 cm−1, which correspond to ZnO
vibrational modes [6]. The forming of PDA stimulated the occurrence of new peaks in the range of
1100–2000 cm−1. The increase in the concentration of PDA resulted in an increase in the absorption
peak value due to the increase in PDA thickness. PDA peaks are located at 1288, 1492, 1607, 3362 cm−1,
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which correspond to C–O, C=N or/and C=C, C=O and –OH or/and N–H vibrational modes [21].
The forming of PDA-based composites results in a shift of FTIR peaks. Compared to the pure ZnO
FTIR spectra, the formation of a PDA layer around ZnO led to a shift in the FTIR peak positions of
12–20 cm−1 to the lower values of wavenumbers.
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Figure 3. FTIR spectra of ZnO with 1 h PDA deposition.

Photoluminescence (PL) is a simple method for surface defect characterization [3,22,23]. It shows
defects, responsible for certain PL bands. The analysis of PL emission vs. excitation power allows to
evaluate the defect concentration and the quantum efficiency [3,22,23]. Optical characterization was
performed by using PL and diffuses reflectance spectroscopy. The room temperature photoluminescence
of ZnO–PDA nanorods is shown in Figure 4a. ZnO–PDA nanostructures had two peaks, located in UV
and visible ranges. These peaks correspond to exciton and defect emissions [6,24]. Analysis PL spectra
showed changes of the spectra, affected by the PDA layer. After the deposition of the PDA layer, UV
peak position (378 nm) shifted towards a shorter wavelength, whereas the visible peak position shifted
longer wavelengths (Figure 4a). Absolute values of difference of peak positions between ZnO and
ZnO–PDA nanostructures in the UV and visible range are plotted in Figure 4b. From Figure 4b, it was
found that the peak shift value increased with PDA concentration. The saturation of the shift values
was observed for both peaks at a dopamine concentration of 0.7 mg/mL. The forming of the PDA
layer on the ZnO surfaces resulted in PL quenching. The PL quenching effect was proportional to
PDA concentration.

The band gap values of ZnO–PDA were graphically calculated in the linear part of the absorption
edge (Figure 4c). The band gap dependence of ZnO–PDA nanostructures vs. dopamine concentration
(Figure 4d) showed saturation at concentrations of 0.5–0.7 mg/mL. The obtained values are lower than
the typical value for ZnO single crystal (Eg = 3.37 eV). The shift of the PL peaks and reduction in the
band gap point to the change of surface properties of ZnO after PDA deposition.

The quenching of photoluminescence after PDA deposition can be partially explained by the
formation of a thicker PDA layer over ZnO, confirmed by TEM observations. The increase in the PDA
concentration results in an enhanced light absorption by the PDA layer. However, the enhanced light
absorption does not explain the change of UV and visible peaks position.
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Figure 4. Optical characterization of ZnO–PDA nanorods with various PDA concentrations: (a) PL
spectra; (b) change of the photoluminescence (PL) peak position in the UV and visible range; (c) graph
for the band gap estimation; (d) band gap vs. dopamine concentration.

Previously, we reported on the possible forming of the ZnO–PDA interface and the effects for
optical properties of ZnO/PDA nanostructures for one fixed PDA concentration [6]. The proposed
mechanisms of the change of the optical properties were the following:

- ZnO oxygen vacancies were involved in dopamine polymerization as absorbance centers;
- Local field was formed between ZnO and PDA;
- Extension of depletion layer in ZnO appeared.

All these reduced the concentration of the PL emission centers and emission quantum efficiency.
In the present work, the photoluminescence properties of ZnO–PDA nanostructures, PL intensity

and peak positions, are affected by PDA concentration. It is expected that the PL quenching will remain
at higher PDA concentrations. The saturation of the values, equal to a peak shift (nm) at a 0.7 mg/mL
PDA concentration, can be explained by the fixed concentrations of electrons, emission centers and
ZnO dimensions. This means that the depletion layer in ZnO nanorods has a restricted value, which
does not change with a higher increase in PDA concentration.

The band gap of ZnO–PDA nanostructures decreased with the increase in the PDA concentration.
As reported before, this difference could be due to the forming of point defects and charge transfer from
ZnO towards the PDA layer [25]. Similar effects were observed in acceptor-doped ZnO nanostructures
or Schottky-type junction where the electron transfer from ZnO to the doping agent/or altering layer
took place [26]. The saturation of the band gap value against the PDA concentration is in good
correlation with the observed photoluminescence properties. The band gap saturation is reached due



Nanomaterials 2020, 10, 2438 7 of 11

to the restriction of the PDA layer effect to the charge transfer or extension of the depletion layer
in ZnO.

In the final stage, the z-potential of ZnONR and ZnO–PDA samples, which is indicative of
the surface charge, and demonstrates the applicability of produced composites towards biosensing
application, were measured. The z-potential of ZnONRs was +28.8 ± 7.1 mV, showing the positive
charge of the surface. While the z-potential of ZnO–PDA samples was about−27.5± 5.3 mV. This means
that after the ZnO surface modification by PDA, the ZnO–PDA samples may be used as an effective
biosensing platform for positively charged proteins or other analytes. Thus, the PDA functionalization
of ZnO enables two approaches of its application in biosensors: (i) it could be used as a negatively
charged layer which binds positively charged analytes (electrostatic interaction); and (ii) due to the
presence of reactive groups on its surface, PDA film offers further biomolecule immobilization for
biosensors and biochip construction (Wan-der-Waals interaction).

The formation of the ZnO–PDA interface was previously discussed in Fedorenko et al. [6]. Due to
the proposed model, PDA formed on ZnO surface, and led to a reduced concentration of defects and
enhanced the depletion layer width [6]. This resulted in the decrease in ZnO photoluminescence
intensity and peak shift [6]. In the present paper, we observed similar behavior with an increase in
PDA concentration. A significant change in PL intensity is already observed under a 0.3 mg/mL PDA
concentration. Increasing the PDA concentrations leads to the decrease in the PL intensity that may be
explained by the improvement of the PDA layer conformality, as was demonstrated by TEM analysis.
FTIR and Raman showed the formation of additional hydroxyl groups on the ZnO/PDA interface.
No significant influence of PDA concentration on the Raman and FTIR spectra was recorded. However,
the enhancement of the PDA concentration might reduce the potential response of ZnO–PDA biosensor.

In order to evaluate the correlation between the surface and optical properties of ZnO/PDA
nanostructures, probe testing towards 50 µg/mL of poly-l-lysine (PLL) was performed. It is known,
that poly-l-lysine contains positively charged hydrophilic amino groups even in moderately alkaline
media [27,28]. It has been used for sensing [29,30], biomimetic [31], tissue engineering [32,33] and drug
delivery applications [34,35].

It was found that the PLL adsorption on the surface of ZnO/PDA resulted in the change in
PL intensity (Figure 5a,b). The analysis of the change in PL intensity after the PLL adsorption was
performed for fixed wavelengths of 377, 420 and 520 nm. The signal change was calculated as [3]

S = [1 − I(PLL)/I(0)], (1)

where I(0) and I(PLL) are the PL intensity before and after PLL deposition, respectively. It is seen from
Figure 5a,b that PLL resulted in a PL intensity decrease in the range 370–430 nm and a PL increase in
the range of 490–560 nm. PDA concentration was a key factor for response to PLL. The plotted signal
change for the selected wavelengths was plotted in Figure 5c. It was found that the sensor response
was the highest for 420 nm and it was significantly small for 520 nm. The signal response to PLL
increased with the increase in PDA concentration.

It was assumed that positively charged PLL will passivate the negatively charged surface of
ZnO/PDA. The enhancement of PL was expected due to the model proposed by Fedorenko et al. [6].
However, adsorbed PLL molecules on the surface of ZnO/PDA resulted in a decrease in UV peaks.
We suppose that two competing processes might take place. As it is supposed that a non-conformal
layer was obtained at low concentrations, the interaction between ZnO and PLL might take place.
Previously, we showed that the deposition of a positively charged polymer over ZnO resulted in an
increase in PL [22]. Thus, the interaction between PLL and PDA in the conformal coated areas could
result in a decrease in UV emission and the interaction of PLL with ZnO in uncoated regions had an
opposite effect. As with the increase in the PDA concentration, the coating quality increased, therefore
the PL intensity in the visible range remains unchanged.
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4. Conclusions

In summary, we represented the first data on PDA concentration influence on ZnO–PDA
nanocomposite properties and sensing. The correlation between the structural and optical properties
of 1D ZnO–PDA nanostructures was evaluated. The detailed study of structural and optical properties
of ZnO–PDA nanocomposites was represented. The TEM images demonstrated the ability to
produce conformal PDA coating over ZnO nanorods after optimizing the concentration of precursors.
Additionally, the progressive coverage of the PDA layer shows the gradual decrement in the optical
bandgap of ZnO. The analysis of FTIR and Raman spectra after the formation of the ZnO–PDA
composite, was shown. Based on these measurements (FTIR and Raman spectroscopy), it is suggested
that PDA was attached to the ZnO via –OH groups. The interaction between ZnO–PDA and the
model poly-l-lysine molecules showed the change of photoluminescence spectra in the UV and visible
ranges. Changes in the emission intensity in the UV range are related to PLL–PDA interaction, whereas
changes in visible spectra correspond to ZnO–PLL interaction. The ZnO–PLL interaction rate was
suppressed at higher PDA concentrations (0.5 and 0.7 mg/mL).
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V.F., R.V., A.R., A.Š., K.G., Ş.A., R.M., E.C., I.I.; resources, R.V., A.R., E.C., I.I.; data curation, D.D., K.G., V.F.;
writing—original draft preparation, D.D., V.F., R.V., E.C., I.I.; writing—review and editing, R.V., E.C., I.I., A.R.,
A.Š., R.M.; visualization, D.D., V.F.; supervision, R.V., I.I., A.R., E.C.; project administration, R.V., I.I., V.F.; funding
acquisition, R.V., I.I., V.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by ‘1D ZnO/Polidopamı̄na kodola čaulas nanostruktūru izstrāde ar uzlabotu
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