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Abstract. In this work, the Galerkin–Vlasov method was used to solve the governing partial differential equation 

of equilibrium for isotropic sandwich plates with simply supported edges (x = a, y = b) and under uniform load on 

the plate domain ( , ).a x a b y b       Vlasov procedure was adopted in choosing the displacement shape func-

tions as orthogonal eigen functions of dynamic Euler Bernoulli beams with equivalent spans, simple supports and 

loading as the plate. The resulting Galerkin-Vlasov equation was solved to obtain the unknown generalised shape 

function. It was found that the deflections obtained were exact solutions to the problem of bending isotropic sandwich 

plates. The deflection was found to be made up of two components: flexural deformation and shear deformation. 

Keywords: isotropic sandwich plate; Galerkin–Vlasov method; governing differential equation of equilibrium; or-

thogonal eigen functions; generalized displacements parameters. 

1 Introduction 

The idea of sandwich construction in the use of com-

posite structures has become very popular due to the de-

velopment of man-made cellular materials as core materi-

als. Sandwich structures are composite structures made up 

of a pair of thin stiff, strong skins (called faces, facings or 

covers) a thick light weight core to separate the skins and 

carry loads from one skin to the other and an adhesive 

attachment capable of transmitting shear and axial loads 

to and from the core (Petras, 1998). Figures 1–2 show 

typical cross-sectional view and three dimensional view 

of a sandwich plate. Sandwich plates are plates made of 

three layers, the top and bottom layers (called facings) are 

usually thin and are made from high strength material 

while the thick middle layer (called core) is made from a 

relatively light and low strength material (Magnucka–
Blandzi and Wittenborg, 2013). The motivation for use of 

sandwich plate as a structural material is two fold. First, 

in plate bending theory, the maximum normal stresses 

occur at the top and bottom surfaces. Hence it is sensible 

using high strength materials at the top and bottom and 

low and light weight materials in the middle. Second, the 

bending resistance for a plate is proportional to the value 

of the thickness. Thus, increasing the thickness by adding 

a core in the middle increases the flexural resistance. 

(Kormaniková and Mamuzic, 2011). 

Due to the thick core, the use of the Kirchhoff 

(classical) plate theory results in an underestimation 

of the deflections since it does not account for the 

affect of the transverse shear deformation. The sim-

plest shear deformable plate theories that takes cogni-

zance of the transverse shear deformation effect are 

the Reissner and the Mindlin first order shear defor-

mation plate theories. 
 

 

Figure 1 – Typical cross-sections of a sandwich plate 

 

Figure 2 – 3D view of isotropic sandwich plate 
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The maximum shear stress generally occurs in the 

middle of the sandwich plate, requiring a core to resist the 

shear. 

The most commonly used sandwich plate theory is lin-

ear, and is an extension of the first order shear defor-

mation plate theory. Linear sandwich plate theory is of 

vital importance in the analysis and design of sandwich 

panels which are frequently encountered in building con-

struction, vehicle construction, airplane construction and 

refrigeration systems. (Liaw Boen Dar, 1965, Balken et al 

2010). Some advantages of sandwich plates are (Allen, 

1969; Vinson, 2001; Raville, 1955): 

– sandwich plates have composite cross-sections with a 

considerably higher shear strength to weight ratio than the 

equivalent non composite plate. The composite plate also 

has a higher tensile strength to weight ratio; 

– the high stiffness of the face sheet results in high 

bending strength to weight ratio for the composite plate. 

The advantages in weight and bending stiffness make 

sandwich plates attractive in many applications. 

Sandwich plates have found widespread application in 

the aircraft industry for both civil and military aircrafts, in 

the structure of missiles and satellites. Magnueka – Blan-

dzi and Wittenbeek (2013) formulated equations for the 

mathematical model of a sandwich circular plate consist-

ing of two facings and a core with variable mechanical 

properties. They derived their equation using the principle 

of total potential energy. Wang (1995) derived the gov-

erning equilibrium equations for sandwich plates on the 

basis of the Reissner–Mindlin shear deformation plate 

theory, and presented exact relationships between the 

deflections of isotropic sandwich plates and their corre-

sponding Kirchhoff plates. 

Kormenikova and Manuzic (2011) used the shear de-

formation plate laminate theory for sandwich plates by 

neglecting the membrane and bending deformations in the 

core and the shear deformation in the findings. 

2 Research Methodology 

2.1 Theoretical framework 

The governing differential equation of equilibrium of 

rectangular sandwich plates can be obtained by ignoring 

the non linear terms in the Reissner’s plate equation, 

(Liaw Boen Dar, 1968) thus, 

 2 2 2( , ) ( , )
s

D
D w p x y p x y

D
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w(x, y) is the transverse displacement; p is the dis-

tributed transverse load; Ds is the shear modulus; D is 

the flexural modulus. 

Equation (1) can be expressed as: 
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2.2 Methodology 

The rectangular sandwich plate (2a2b) shown in  

Figure 3 and subject to uniform transverse load p0 on the 

entire domain was considered. The region of Cartesian 

coordinates was taken at the plate centre due to symmetry 

of the plate and the load. 

 

 

Figure 3 – Simply supported rectangular sandwich plate  

under uniformly distributed load 

By the Galerkin–Vlasov variational method, w(x, y) 

and p(x, y) were considered as linear combinations of 

orthogonal eigen functions of vibrating simply supported 

Euler beams of spans 2a and 2b with simple supports at  

x = a; x = a; y = b; y = b. The boundary conditions for 

the simply supported sandwich plates are: 

 0( , )w x a y   ; (8) 
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w
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 0( , )w x y b   ; (10) 
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By the Vlasov method, suitable shape functions chosen 

as the eigen functions of vibrating Euler-Bernoulli beams 

are found by applying Equations (8)–(11) on 
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1 1 2 1

( ) sin cosw x c x c x   ; (12) 

and 

 
3 2 4 2

( ) sin cosw y c y c y   , (13) 

where c1, c2, c3 and c4 are constants and i and i are to be 

determined, i = {1; 2}. 

Hence, 

 
2
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2
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n y
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
  n = {1, 3, 5, 7}. (15) 

Following Kantorovich technique, w(x, y) and p(x, y) are 

considered as variable separable functions 
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The Galerkin – Vlasov variational integral becomes: 
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Simplifying, 
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Simplification yields for particular integer values of m 

and n, 
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The orthogonality properties of the integrals of the eig-

en functions Fm(x) and Gn(y) lead to the simplification of 

the Galerkin – Vlasov variational integral to obtain: 
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Using the Wolfram Mathematica integration software, 
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For uniformly distributed transverse load of intensity 

p0 over the entire plate domain, 
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Using the integrals, and Equation (37), we obtain 
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2.3 Maximum deflection 

The maximum deflection occurs at the plate centre, and the 

components are given by: 
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The values of maximum deflection for the flexural and 

shear components are calculated for various values of 

aspect ratio, and presented in Table 1 for various ratios of 

D/Ds. The convergence properties of the deflation func-

tions Equations (37)–(38) are illustrated by considering 

the m, n terms in the series of maximum deflection for the 

case of square plates (b/a = 1) and shown in Table 2. 

Table 1 – Maximum deflection coefficients for the centre of uniformly loaded  

sandwich plates (2a  2b) with simply supported edges (x = a; y = b) 

b/a 
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2
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sD a

D
  

4

0( )
max
s p a

w
D

 
 
 

 

1.0 6.496·102 28.48·102 28.48·102 2.848·102 1.424·102 0.5696·102 

1.2 9.024·102 34.72·102 34.720·102 3.4720·102 1.7360·102 0.69440·102 

1.4 11.280·102 38.68·102 38.68·102 3.868·102 1.934·102 0.7736·102 

1.6 13.280·102 41.68·102 41.68·102 4.168·102 2.084·102 0.8336·102 

1.8 14.896·102 43.92·102 43.92·102 4.392·102 2.196·102 0.8784·102 

2.0 16.208·102 45.56·102 45.56·102 4.556·102 2.278·102 0.9112·102 

3.0 19.568·102 49.08·102 49.08·102 4.9080·102 2.454·102 0.9816·102 

4.0 20.512·102 49.80·102 49.80·102 4.980·102 2.49·102 0.9960·102 

5.0 20.752·102 49.96·102 49.96·102 4.996·102 2.498·102 0.9992·102 

 20.832·102 50.00·102 50.00·102 5.000·102 2.500·102 1.0000·102 

 

Table 2 – Convergence characteristics of wf and ws for b/a = 1 

m n 
4

2
10max

f pa
w

D

 
 
 

 
4

2
10max

s

s

pa
w

D

 
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 

 

1 1 6.657 32.851 

3 1 6.568 30.661 

1 3 6.479 28.470 

3 3 6.489 28.876 

3 5 6.487 28.748 

5 3 6.486 28.619 

5 5 6.486 28.671 

5 7 6.486 28.646 

7 5 6.486 28.620 

7 7 6.486 28.634 

3 Results and Discussion 

The governing partial differential equation of equilib-

rium of rectangular isotropic sandwich plate with simply 

supported edges (x = a; y = b) given by Equation (1) 

has been solved to obtain the unknown deflections for the 

case of uniformly distributed load over the entire 

plate. Vlasov procedure was adopted to choose the 

shape functions as the orthogonal eigen functions of 

vibrating Euler Bernoulli beams as Equations (14) 

and (15). The Galerkin – Vlasov variational integral 

was obtained as Equation (18). Simplifications by use 

of the orthogonality of the eigen basis functions and 

integrations yielded the solution for the unknown 

generalized displacement coordinates as Equation 

(30). 

It was observed that the solution for displacements 

showed there are two displacement components; 

flexural displacements and shear displacements. For 

uniform loads, the flexural displacements were ob-

tained as Equation (40) and the shear displacements 

as Equation (41). The series obtained for the dis-

placements were rapidly convergent and the conver-

gent solutions after five (5) terms of the series for 

different aspect ratios were calculated and presented 

in Table 1. The table shows that as the ratio Ds/D 

increases, the contribution of shear deformation to the 

overall deformation of the sandwich plate reduces. 
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Table 2 illustrates that the expression for flexural compo-

nent of deflection converges faster than the expression for 

the shear component. Convergence to the exact flexural 

component is achieved for m = n= 5, while that for the 

shear component is achieved for higher values of m, n. 

The Galerkin Vlasov solutions obtained in this study were 

in exact agreement with solutions obtained for simply 

supported isotropic sandwich plates by Plantema, (1966) 

who used a Navier series method. 

4 Conclusions 

The Galerkin–Vlasov method has been successfully 

used to solve the governing partial differential equations 

of isotropic sandwich plates with simply supported edges 

(x = a; y = b) under uniformly distributed load. 

The solution gave exact solution for the deflection as a 

rapidly converging double trigonometric (cosine) series 

of infinite terms. 

The deflection w(x, y) was found to be made up of a 

flexural component w
(f)

(x, y) and a shear component 

( )
( , ).
s
x yw  

The contribution of the shear deformation to the total 

(resultant) deformation reduces as the ratio Ds/D increas-

es. 

This paper will hopefully enhance our understanding 

of the deflection behaviour of simply supported isotropic 

sandwich plates under uniformly distributed load. 
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Ɇɟɬɨɞ Ƚаɥьɨɪɤɿɧа–ȼɥаɫɨɜа ɞɥɹ аɧаɥɿɡɭ ɧаɩɪɭɠɟɧɨ-ɞɟɮɨɪɦɨɜаɧɨɝɨ ɫɬаɧɭ  
ɪɿɜɧɨɦɿɪɧɨ ɧаɜаɧɬаɠɟɧɨʀ ɿɡɨɬɪɨɩɧɨʀ ɲаɪɭɜаɬɨʀ ɩɥаɫɬɢɧɢ 

Ɇɚɦɚ Ȼ. Ɉ.1, Іɤɟ ɑ. ɑ.
2*

 

1 ɇɿɝɟɪɿɣɫьɤɢɣ ɭɧɿɜɟɪɫɢɬɟɬ, ɦ. ɇɫɭɤɤɚ, 410101, ɒɬɚɬ ȿɧɭґɭ, ɇɿɝɟɪɿɹ;  
2 Ⱦɟɪɠɚɜɧɢɣ ɭɧɿɜɟɪɫɢɬɟɬ ɧɚɭɤɢ ɿ ɬɟɯɧɨɥɨɝɿʀ ɦ. ȿɧɭґɭ , ɉ.M.Ȼ. 01660, ɦ. ȿɧɭґɭ, ɇɿɝɟɪɿɹ 

Аɧɨɬаɰɿɹ. У ɪɨɛɨɬɿ ɡɚɫɬɨɫɨɜɚɧɨ ɦɟɬɨɞ Ƚɚɥьɨɪɤɿɧɚ–ȼɥɚɫɨɜɚ ɞɥɹ ɪɨɡɜ’ɹɡɚɧɧɹ ɞɢɮɟɪɟɧɰɿɚɥьɧɢɯ ɪɿɜɧɹɧь 
ɪɿɜɧɨɜɚɝɢ ɿɡɨɬɪɨɩɧɢɯ ɲɚɪɭɜɚɬɢɯ ɩɥɚɫɬɢɧ ɡ ɪɿɜɧɨɦɿɪɧɨ ɧɚɜɚɧɬɚɠɟɧɢɦɢ ɲɚɪɧɿɪɧɨ ɨɩɟɪɬɢɦɢ ɤɪɚɹɦɢ (x = a; 

y = b). Ɉɛɪɚɧɚ ɩɪɨɰɟɞɭɪɚ ȼɥɚɫɨɜɚ ɞɥɹ ɜɢɡɧɚɱɟɧɧɹ ɮɭɧɤɰɿɣ ɮɨɪɦɢ ɹɤ ɨɪɬɨɝɨɧɚɥьɧɢɯ ɜɥɚɫɧɢɯ ɮɭɧɤɰɿɣ ɡɚ 
ɦɨɞɟɥɥɸ ȿɣɥɟɪɚ–Ȼɟɪɧɭɥɥɿ ɞɥɹ ɜɢɩɚɞɤɭ ɲɚɪɧɿɪɧɢɯ ɨɩɨɪ ɿ ɪɿɜɧɨɦɿɪɧɨɝɨ ɧɚɜɚɧɬɚɠɟɧɧɹ. Ɋɟɡɭɥьɬɭɸɱɟ ɪɿɜɧɹɧɧɹ 
Ƚɚɥьɨɪɤɿɧɚ–ȼɥɚɫɨɜɚ ɪɨɡɜ’ɹɡɚɧɟ ɡ ɦɟɬɨɸ ɜɢɡɧɚɱɟɧɧɹ ɧɟɜɿɞɨɦɨʀ ɮɭɧɤɰɿʀ ɭɡɚɝɚɥьɧɟɧɨʀ ɮɨɪɦɢ. ȼɫɬɚɧɨɜɥɟɧɨ, ɳɨ 
ɨɬɪɢɦɚɧɿ ɩɟɪɟɦɿɳɟɧɧɹ є ɬɨɱɧɢɦɢ ɪɿɲɟɧɧɹɦɢ ɡɚɞɚɱɿ ɩɪɨ ɜɢɝɢɧ ɿɡɨɬɪɨɩɧɢɯ ɲɚɪɭɜɚɬɢɯ ɩɥɚɫɬɢɧ. ȼɢɹɜɥɟɧɨ, ɳɨ 
ɩɟɪɟɦɿɳɟɧɧɹ ɫɤɥɚɞɚɸɬьɫɹ ɡ ɞɜɨɯ ɤɨɦɩɨɧɟɧɬɿɜ: ɡɝɢɧɚɥьɧɨʀ ɞɟɮɨɪɦɚɰɿʀ ɬɚ ɞɟɮɨɪɦɚɰɿʀ ɡɫɭɜɭ. 

Ʉɥɸɱɨɜɿ ɫɥɨɜа: ɿɡɨɬɪɨɩɧɚ ɲɚɪɭɜɚɬɚ ɩɥɚɫɬɢɧɚ; ɦɟɬɨɞ Ƚɚɥьɨɪɤɿɧɚ–ȼɥɚɫɨɜɚ; ɪɿɜɧɹɧɧɹ ɪɿɜɧɨɜɚɝɢ; ɨɪɬɨɝɨɧɚɥьɧɿ 
ɜɥɚɫɧɿ ɮɭɧɤɰɿʀ; ɭɡɚɝɚɥьɧɟɧɿ ɩɚɪɚɦɟɬɪɢ. 
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