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Abstract. In this work, the Galerkin—Vlasov method was used to solve the governing partial differential equation
of equilibrium for isotropic sandwich plates with simply supported edges (x = £a, y = +b) and under uniform load on
the plate domain (—q < x <a, —b < y < b). Vlasov procedure was adopted in choosing the displacement shape func-

tions as orthogonal eigen functions of dynamic Euler Bernoulli beams with equivalent spans, simple supports and
loading as the plate. The resulting Galerkin-Vlasov equation was solved to obtain the unknown generalised shape
function. It was found that the deflections obtained were exact solutions to the problem of bending isotropic sandwich
plates. The deflection was found to be made up of two components: flexural deformation and shear deformation.

Keywords: isotropic sandwich plate; Galerkin—Vlasov method; governing differential equation of equilibrium; or-
thogonal eigen functions; generalized displacements parameters.

1 Introduction Due to the thick core, the use of the Kirchhoff
(classical) plate theory results in an underestimation

The idea of sandwich construction in the use of com-  of the deflections since it does not account for the
posite structures has become very popular due to the de-  affect of the transverse shear deformation. The sim-
velopment of man-made cellular materials as core materi-  plest shear deformable plate theories that takes cogni-

als. Sandwich structures are composite structures made up ~ zance of the transverse shear deformation effect are
of a pair of thin stiff, strong skins (called faces, facings or ~ the Reissner and the Mindlin first order shear defor-
covers) a thick light weight core to separate the skins and  mation plate theories.

carry loads from one skin to the other and an adhesive t

Facing

attachment capable of transmitting shear and axial loads
to and from the core (Petras, 1998). Figures 1-2 show
typical cross-sectional view and three dimensional view

Facing

Core

of a sandwich plate. Sandwich plates are plates made of
three layers, the top and bottom layers (called facings) are
usually thin and are made from high strength material
while the thick middle layer (called core) is made from a Figure 1 — Typical cross-sections of a sandwich plate
relatively light and low strength material (Magnucka—

Blandzi and Wittenborg, 2013). The motivation for use of

sandwich plate as a structural material is two fold. First,

in plate bending theory, the maximum normal stresses

occur at the top and bottom surfaces. Hence it is sensible Core

using high strength materials at the top and bottom and

low and light weight materials in the middle. Second, the

bending resistance for a plate is proportional to the value Facing

of the thickness. Thus, increasing the thickness by adding
a core in the middle increases the flexural resistance.
(Kormanikova and Mamuzic, 2011).

\j

Figure 2 — 3D view of isotropic sandwich plate
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The maximum shear stress generally occurs in the
middle of the sandwich plate, requiring a core to resist the
shear.

The most commonly used sandwich plate theory is lin-
ear, and is an extension of the first order shear defor-
mation plate theory. Linear sandwich plate theory is of
vital importance in the analysis and design of sandwich
panels which are frequently encountered in building con-
struction, vehicle construction, airplane construction and
refrigeration systems. (Liaw Boen Dar, 1965, Balken et al
2010). Some advantages of sandwich plates are (Allen,
1969; Vinson, 2001; Raville, 1955):

— sandwich plates have composite cross-sections with a
considerably higher shear strength to weight ratio than the
equivalent non composite plate. The composite plate also
has a higher tensile strength to weight ratio;

—the high stiffness of the face sheet results in high
bending strength to weight ratio for the composite plate.

The advantages in weight and bending stiffness make
sandwich plates attractive in many applications.

Sandwich plates have found widespread application in
the aircraft industry for both civil and military aircrafts, in
the structure of missiles and satellites. Magnueka — Blan-
dzi and Wittenbeek (2013) formulated equations for the
mathematical model of a sandwich circular plate consist-
ing of two facings and a core with variable mechanical
properties. They derived their equation using the principle
of total potential energy. Wang (1995) derived the gov-
erning equilibrium equations for sandwich plates on the
basis of the Reissner—-Mindlin shear deformation plate
theory, and presented exact relationships between the
deflections of isotropic sandwich plates and their corre-
sponding Kirchhoff plates.

Kormenikova and Manuzic (2011) used the shear de-
formation plate laminate theory for sandwich plates by
neglecting the membrane and bending deformations in the
core and the shear deformation in the findings.

2 Research Methodology

2.1 Theoretical framework

The governing differential equation of equilibrium of
rectangular sandwich plates can be obtained by ignoring
the non linear terms in the Reissner’s plate equation,
(Liaw Boen Dar, 1968) thus,

4 4 4
vy @, O O, o)
ot axzﬁyz 8y4

w(x, y) is the transverse displacement; p is the dis-
tributed transverse load; D, is the shear modulus; D is
the flexural modulus.

Equation (1) can be expressed as:

Viw(x, y) = p(xT’y) - D% V2 p(x,y) (©)

\)
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2.2  Methodology

The rectangular sandwich plate (2ax2b) shown in
Figure 3 and subject to uniform transverse load p, on the
entire domain was considered. The region of Cartesian
coordinates was taken at the plate centre due to symmetry
of the plate and the load.

Ay
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Figure 3 — Simply supported rectangular sandwich plate
under uniformly distributed load

By the Galerkin—Vlasov variational method, w(x, y)
and p(x, y) were considered as linear combinations of
orthogonal eigen functions of vibrating simply supported
Euler beams of spans 2a and 2b with simple supports at
x=-a;x =a;y=-b;y = b. The boundary conditions for
the simply supported sandwich plates are:

w(x =%a,y)=0; (8)
DV?V2y = p(x,y)— EVzp(x, y)» 1
Dy o*w
wxx(x=ia,y)=a—2(x=ia,y):0; (&)
where X
Dv _ hGC : (2) W(X, y= ib) =0; (10)
3 O*w
_ Eh : 3) wyy (X, y:ib):a_z(x’ y=1b)=0- (11)
12(1-p?) 4
) ) By the Vlasov method, suitable shape functions chosen
v2 = 6_ + 6_ ; @ as the eigen functions of vibrating Euler-Bernoulli beams
ot oy are found by applying Equations (8)—(11) on
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w(x) = cysinoyx+ ¢, cosPyx;

b a

[ [FroR,0Gmady =17 (22)
and ~b-a
T . b a
W) = c38in 0y + ¢4 0SBy (13) [ [ EnF,(0Gi(0G, (dxdy =1, (23)
where ¢, ¢,, ¢; and ¢4 are constants and ¢; and f; are to be ~ba
determined, i = {1; 2}. a
Hence, j [ Er(0G) (0G, () dxdy = I 24
-b-a
Fm(x):cosn;—m, m={1,3,5,7} (14 b
’ [ ] B2eociasas =1, 25)
,b,
G,(y) =cos 2 n={1,3,57}. (15) ‘
2b b a ]
" 2 — 5 2
Following Kantorovich technique, w(x, y) and p(x, y) are Jh J En(0)Ey ()G, (y) dxdy = Is (26)
considered as variable separable functions ¢
b a
s F2()Gh(3)G, (y)dxdy = Ig - @n
W) = 2 D W ()G, () (16) L] P0G 0y ) dy =1
m n
w o Then
POLY) = DD PnFon (DG, () - a7
mn wm”(11+212+13):p—g"l4—%(15+16)§ (28)
The Galerkin — Vlasov variational integral becomes: ’
b a 4 4
I I{[ a +2 2 ]zzwmn m(x)G (y)__zzpmn (X)Gn(y) pmn 14 pmn (15 +16)
o e ax ay T e W = _ s ; (29)
mn
Iy +21, +13) (U +2, +13)
T 1 [a a jzzpmn mnGn}F,(X)Gj(y)dXdy:O (18) 1 2 3 1 2 3
x 'y m n
g K} Pmin I Pmn Is+1 . 30
el o B )ttt o0

)3 mnH

m n —b-a

t o7 ijU)G,l(y)F(X)G (v)dxxy = Zzp’”” j jF (x)
y

([ »
f J(J 19)

G, ()F(x)G;(y) dxdy —Zz’ﬂ + g]Fm(x)Gn(ny)G_,-(y)dxdy

Using the Wolfram Mathematica integration software,

w D5 2 mtn? mu\t .
. s e . . . I, = ab=|—| ab: (3D
Simplification yields for particular integer values of m 1 164t 2a
and n,
2 2 2 2 4
(A , o I :_("”‘) a— (”") p=tMmT b (32)
Won | [ CEat (G, (DF (0G 1 (3) + 2 ()G (0)F (X)G ; (3) + By (¥)G! (1)F; (¥)G (3 )lxdy 2a 2b 1642h2
-b-a
b a
P | [ Fu ()G, (DE ()G ;(y)elxdy — Lo ”’"" j j(F”(x)G (MG;(N)G;(y) 7. = n'z® ba (33)
-b-a V —b-a 3 4
16b
. ) 20
+ F,y (DG F ()G, () ddy (20) I = ab (34)
The orthogonality properties of the integrals of the eig- ) 9
en functions F,,(x) and G,(y) lead to the simplification of Is = —ba mm . 35)
the Galerkin — Vlasov variational integral to obtain: 4a’
b a . ) 2_2
W | [ (B COF,(0GE(3) + 2B (O F ()G ()G, () + F2(0GE (G, (y)dxdy Ig = —ba"—-. (36)
b a 4b
pmn
or uniform 1stributed transverse load of intensit
Jb J P02ty For uniformly distributed load of intensity
b a - 21) po over the entire plate domain,
- [ (B 0B, (NGR0) + E20GH 0G0y ¢ e
Dy bla m+n—
16po
P = SN (37)
Let m
Using the integrals, and Equation (37), we obtain
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2.3 Maximum deflection

) 1)(m+n—2)/2 . (41)

max

64p oooo(_
=AY

D™ i m?  n?
a b

The values of maximum deflection for the flexural and
shear components are calculated for various values of
aspect ratio, and presented in Table 1 for various ratios of
D/D;. The convergence properties of the deflation func-
tions Equations (37)—(38) are illustrated by considering
the m, n terms in the series of maximum deflection for the

w

The maximum deflection occurs at the plate centre, and thecage of square plates (b/a = 1) and shown in Table 2.

components are given by:

» @ (40)
5 %)

m n

w,

256p0(71)(m+n—2)/2 B 256])0 © 00 (_1)(m+nfz)/2
2 2
n n

6 m? Dr® m? :
Dn°| mn —*t3 mn| —-+—
a b a b

Table 1 — Maximum deflection coefficients for the centre of uniformly loaded
sandwich plates (2a x 2b) with simply supported edges (x = *a; y = £b)

2

2 2
aEae ﬁL&ﬁ?& : : : :
s anax (X Pod j quax (X Pod ] Wi [x Pod J WE;BX (X Mj
D D D D
1.0| 6.496-1072 28.48-1072 28.48-1072 2.848-1072 1.424-1072 0.5696- 1072
12| 9.024.1072 34.72-1072 34.720-1072 3.4720-1072 1.7360-107> 0.69440-1072
14| 11.280-1072 38.68-107> 38.68-1072 3.868-1072 1.934.1072 0.7736-107>
1.6 | 13.280-1072 41.68-1072 41.68-1072 4.168-1072 2.084-107 0.8336-107>
1.8 | 14.896-1072 43.92-1072 43.92.1072 4.392-1072 2.196-107> 0.8784-107>
20| 16208107 45.56-1072 45.56-1072 4.556-1072 2.278-1072 0.9112-1072
3.0| 19.568-107 49.08-1072 49.08-1072 4.9080-1072 2.454-1072 0.9816-1072
40| 20512107 49.80-1072 49.80-1072 4.980-1072 2.49-1072 0.9960- 1072
50| 20752107 49.96-1072 49.96-1072 4.996-1072 2.498-1072 0.9992-1072
o | 20.832-1072 50.00-1072 50.00-1072 5.000-1072 2.500-1072 1.0000- 1072

Table 2 — Convergence characteristics of w' and w* for b/a = 1

4
1 1 6.657 32.851
3 1 6.568 30.661
1 3 6.479 28.470
3 3 6.489 28.876
3 5 6.487 28.748
5 3 6.486 28.619
5 5 6.486 28.671
5 7 6.486 28.646
7 5 6.486 28.620
7 7 6.486 28.634

3 Results and Discussion

The governing partial differential equation of equilib-
rium of rectangular isotropic sandwich plate with simply
supported edges (x = a; y = +b) given by Equation (1)
has been solved to obtain the unknown deflections for the

case of uniformly distributed load over the entire
plate. Vlasov procedure was adopted to choose the
shape functions as the orthogonal eigen functions of
vibrating Euler Bernoulli beams as Equations (14)
and (15). The Galerkin — Vlasov variational integral
was obtained as Equation (18). Simplifications by use
of the orthogonality of the eigen basis functions and
integrations yielded the solution for the unknown
generalized displacement coordinates as Equation
(30).

It was observed that the solution for displacements
showed there are two displacement components;
flexural displacements and shear displacements. For
uniform loads, the flexural displacements were ob-
tained as Equation (40) and the shear displacements
as Equation (41). The series obtained for the dis-
placements were rapidly convergent and the conver-
gent solutions after five (5) terms of the series for
different aspect ratios were calculated and presented
in Table 1. The table shows that as the ratio Ds/D
increases, the contribution of shear deformation to the
overall deformation of the sandwich plate reduces.

D18
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Table 2 illustrates that the expression for flexural compo-
nent of deflection converges faster than the expression for
the shear component. Convergence to the exact flexural
component is achieved for m = n= 5, while that for the
shear component is achieved for higher values of m, n.
The Galerkin Vlasov solutions obtained in this study were
in exact agreement with solutions obtained for simply
supported isotropic sandwich plates by Plantema, (1966)
who used a Navier series method.

4 Conclusions

The Galerkin—Vlasov method has been successfully
used to solve the governing partial differential equations
of isotropic sandwich plates with simply supported edges
(x = £a; y = £b) under uniformly distributed load.
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Merton I'anbopkina—BiacoBa 1Jis1 aHanizy HanpyxeHo-1e(GpopMOBaHOIO CTaHy

PIBHOMipHO HABAHTAKEHOI i30TPONHOI IAPYBATOI IVIACTUHH
Mama B. O.', Ike 4. 4.%*

! Hirepiitchkuit yrisepcuter, M. Heykka, 410101, IlItar Enyry, Hirepis;
2 JlepskaBHuii yHiBepcnTeT HayKH i TexHoorii M. Exyry , [.LM.B. 01660, M. Enyry, Hirepis

AHoTanig. Y po6oTti 3acrocoBaHo Meron [anbopkina—BiacoBa 1 po3s’sizaHHS JudepeHLiasbHUX PiBHSHbD
pIBHOBaru i30TPONHHX IIAPYyBAaTHX IUIACTUH 3 PIBHOMIPHO HaBAaHT)KEHHMH MIAPHIPHO OMEPTUMH KpasMu (X = *a;
y =1b). Obpana nponenypa BmacoBa mis Bu3HaueHHS (QyHKIIH GOpMH SIK OPTOTOHATHHHX BIAcHMX (YHKIIH 3a
mozemmo Eitnepa—beprymi a1 BUnaaKy mapHipHAX ONOp i pIBHOMIPHOTO HAaBaHTAXKEHHs. Pe3ynbTyioue piBHSHHS
lanpopkina—BnacoBa po3B’si3aHe 3 METO BH3HAYCHHS HEBiomol (yHKIIT y3aransHeHoi popmu. BeranoBneHo, mo
OTpUMaHi NepeMillleHHs € TOYHUMH PIllIeHHSAMH 3aJia4i PO BUTHH i30TPOIHUX IIAPYBaTHX IUIACTUH. BusBieHo, 1o
HepeMilleHHs CKJIaJAl0ThCs 3 IBOX KOMITIOHEHTIB: 3rHHANBHOT AedopMarii Ta nedopmarii 3cysy.

KirouoBi cioBa: i3oTponHa mapysata ractuia; Meton 'anbopkiHa—BiacoBa; piBHAHHS PiBHOBaru; OpTOrOHAIIbHI

BJIacHI (QYHKIIIT; y3araJbHEHi mapaMeTpH.
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