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Based on LIBOR Market Models, we develop a rigorous pricing framework for cross-currency exotic interest rate 
instruments under a uniform probability measure and in a multifactoral environment that accounts for the empirically 
observed foreign exchange skew. The model resorts to a stochastic volatility approach with volatility dynamics follow-
ing a square-root process and is designed to be flexible enough to allow for the incorporation of as much market infor-
mation as possible. Using the Fourier transform, we produce closed-form valuation formulas for FX options by obtain-
ing an explicit expression for the characteristic function, though in a mildly approximate fashion for the sake of analyt-
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Introduction♦ 

The origins of the proposed Cross-Currency LIBOR 
Market Model (CCLMM) can be traced back to the 
need of developing a unified pricing framework for 
a number of cross-currency exotics. Initially con-
fronted with a hybrid structure that required the 
simultaneous description of highly correlated inter-
est rate markets, foreign exchange (forex) rate and 
hazard rate dynamics, the present work gained im-
petus from the necessity to determine the value of a 
cross-currency swap, which was to serve as an un-
derlying of various derivative products, at an arbi-
trary future date. Typically, FX options exhibit a 
significant volatility skew that manifests itself in the 
at-the-money (ATM) implied volatility’s underesti-
mation of in-the-money (ITM) option prices and 
overestimation of out-of-the-money (OTM) ones, 
whereby the ATM implied volatility has been ob-
tained by inversion of an ATM option pricing for-
mula based on a lognormal stochastic evolution of 
the forward forex rate. Moreover, it seems impossi-
ble for the most cross-currency derivatives to 
choose a particular strike, or a specific maturity of 
an FX option since they usually represent long-
dated exotic structures that either cannot be decom-
posed into plain-vanilla FX options, or at best de-
pend on FX options for a wide range of strikes and 
maturities. Aggravating matters even further, exotic 
cross-currency interest rate derivatives are rarely 
structured to depend on ATM volatilities. They are 
usually designed with strikes far away from at-the-
money. Hence, the volatility function needs to be 
calibrated to prices of FX options across all availa-
ble maturities and strikes as suggested by Piterbarg 
(2006). He asserts that a model similar to that of 
Schloegl (2002) based on LIBOR Market Models, 
yet accounting for forex smiles in a proper manner, 
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and a good FX option calibration algorithm still 
awaits development. For this purpose, it appears 
natural to resort to an extension of the lognormal-
type dynamics of the forward forex rate that is based 
on stochastic volatility. 

This paper proposes an integrated CCLMM under a 
uniform pricing measure in a multifactoral environ-
ment that allows for as much flexibility as possible 
in calibrating model parameters to market data. The 
pricing measure will be uniform as it will be appli-
cable to (i) simple financial instruments that are 
affected only by the domestic interest rate market or 
the foreign interest rate market but not both, as well 
as to (ii) complex financial instruments that are af-
fected by both the domestic and foreign interest rate 
markets linked by the forex market. With the inten-
tion to derive valuation formulas, we deflate all 
stochastic price processes using a single numeraire 
regardless of the market the price process belongs to 
or is affected by, thus ensuring pricing consistency 
between the markets and allowing the evaluation of 
complex financial structures within a LIBOR Mar-
ket Model setup. The model design must be capable 
of reflecting market implied volatilities and exogen-
ously assigned correlation structures between the 
interest rates and FX dynamics. However, the main 
focus will be placed on the calibration to FX options 
for various maturities and strikes simultaneously, 
while retaining one-factor assumptions for both 
interest rate markets. Though somewhat restrictive 
at first glance, this choice keeps the number of mod-
el parameters to be calibrated low affecting high 
speed of calibration without sacrificing accuracy of 
valuation. In addition, the model developed here can 
easily be used as a stepping stone to incorporating 
interest rate volatility smiles on a multi-currency 
basis, which remains a subject of future research. 
The various extensions of the forward LIBOR mod-
els could serve as a starting point of this effort. One 
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possibility would be the postulation of alternate 
interest rate dynamics such as local volatility type of 
extensions based on constant elasticity of variance 
(CEV) processes pioneered by Andersen et al. 
(2000), or the adoption of a displaced-diffusion 
approach as elaborated, for example, by Benner et 
al. (2007). Jump-diffusions are treated in Glasser-
man et al. (2003a, 2003b), but have not gained much 
acceptance due to their producing of non-time-
homogeneous volatility term structures and some 
other calibration complications. Finally as the mod-
elling technique with probably the greatest explana-
tory power, the inclusion of stochastic volatility in 
the LMM is considered by three main research 
streams: Andersen et al. (2005) and Andersen et al. 
(2002), on which Piterbarg (2003) builds using the 
method of calibration by parameter averaging as 
described in Piterbarg (2005a, 2005b) and providing 
formulas that relate market and model skews and 
volatilities directly without the need to develop 
closed-form solutions of European option valuation 
problems. Joshi et al. (2003) choose a distinctly 
different way of analyzing the evolution of the 
swaption volatility matrix over time by assuming a 
specific time-homogeneous instantaneous volatility 
function whose parameters are allowed to vary sto-
chastically. 

The paper is organized as follows. Section 1 devel-
ops a unified pricing framework under a uniform 
domestic forward measure. It determines both the 
dynamics of the domestic/foreign LIBORs and the 
forward forex rate with stochastic volatility. The 
reason why forward forex rates are being modelled 
directly is that, by definition, they represent price 
processes of tradable securities as opposed to spot 
forex rates. In fact, each forward forex rate follows 
a martingale under its natural forward measure, so 
that its dynamics are, under such a measure, fully 
specified by its volatility process. Section 2 derives 
an FX option pricing formula with stochastic forex 
volatilities based on mildly approximate assumptions 
in order to preserve the analytical tractability of the 
model. It also offers an elaborate overview of the 
implemented calibration procedure. The last section 
concludes with a brief summary of the main results 
and some suggestions for future work. For the sake of 
lucid presentation, all purely technical details are 
reserved to the appendices at the end of the paper. 

1. Cross-Currency LMM under uniform probability 
measure 

1.1. Definitions. Given a filtered probability space 
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mon set of LIBOR maturities 0 10 ... Nt t t= < < <  is 
defined for both the domestic and the foreign cur-
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Their stochastic evolution is characterized solely by 
the respective volatility functions ( )i tγ  and ( )f

i tγ , 
which are assumed deterministic within the main 
framework and can be calibrated independently for 
the domestic and foreign LIBORs to single-currency 
caps and swaptions using the well-known tech-
niques for the single-currency LMM suggested by 
Rebonato (2002) and Brigo et al. (2002). To capture 
the implied volatility’s functional dependence on the 
corresponding interest rate option’s strike, a dis-
placed-diffusion approach according to Rubinstein 
(1983) can be adopted, as shown by Benner et al. 
(2007). However, it will not be further pursued in 

this place since we primarily concentrate on retain-
ing sufficient control over forex smiles and develop-
ing a practicable FX option calibration algorithm for 
a wide range of maturities and across a variety of 
strikes. For convenience, the terminal forward prob-
ability measure 

Nt
P  associated with the domestic 

bond maturing at the terminal date Nt  is chosen to 
be the uniform martingale measure throughout the 
paper. Though of marginal importance to the analy-
sis, the structure of both bond volatilities 

( ) ( , )f
Nt tσ  is nonetheless needed and is determined 

according to Benner et al. (2007): 
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1.2. Modeling forward forex rates with stochastic volatility. We begin by assuming the following general 
dynamics for the CCLMM: 
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Strictly speaking, ( )fx
N tσ  is a stochastic quantity 

through its dependence on the realization of the 
LIBOR rates1. Though, it could be made condition-
ally deterministic to a high degree of accuracy by 
some quite sophisticated and extremely precise ap-
proximation methods, or simply by classical “drift-
freezing” techniques2. Yet another approach of di-
rectly calibrating ( )fx tσ  as a (deterministically) 
variable model parameter is being pursued hence-
forth since the forward forex rate represents the 
price process of a tradable asset denominated by the 
corresponding numeraire, hence an observable secu-

                                                 
1 Benner, Zyapkov and Jortzik (2007) show how the spot forex volatility 

( )q tσ  can be calibrated. 
2 For a brief review of existing approximations and the introduction of a 
new one based on BROWNian bridges refer to Benner et al. (2007), 
especially Sect. 3. The “drift-freezing” technique goes back to Daniluk 
and Gatarek (2005). 

rity, as it has already been mentioned above. The 
decomposition of the volatility in (2) serves solely 
for the purpose of enabling us to determine the drift 
of any forward forex rate prior to the terminal one 
by switching from the natural to the terminal meas-
ure, as will be shown shortly. 

Such a model of the forward forex rate can safely be 
used to price FX options with different maturities 
but the same strike. When simultaneously pricing 
options with various strikes, however, the natural 
question arises as to how to account for the usually 
observed smile effect. For this reason, we resort to 
an extension of the lognormal-type dynamics of the 
forward forex rate beyond the geometric BROWNian 
motion and postulate a stochastic volatility evolu-
tion in conformity with Heston (1993) based on a 
common volatility ( )V t  that follows a mean-
reverting square-root process under the physical 
probability measure: 
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Any previous forward forex rate no longer follows a martingale, but its dynamics under 
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while the volatility process evolves under the uniform martingale measure as follows: 
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Finally, the drift functions of both term structures of 
interest rates under 

Nt
P  remain to be computed. It is 

well-understood that the drift of the domestic LI-
BOR takes on the expression: 
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A sequential procedure starting with the terminal 
foreign LIBOR, and moving backwards until the 
spot LIBOR rate is reached, renders the evolution of 

the foreign term structure at last attainable. Since 
any traded asset scaled by the respective numeraire 
will be a martingale under the corresponding meas-
ure, we infer that 1( ) ( , ) ( )f f

N NL t B t t Q t− , which 
represents a portfolio of foreign bonds in domestic 
currency, will be driftless when divided by the nu-
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Applying the same reasoning to an arbitrary foreign LIBOR prior to the terminal one, we obtain: 
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Summarizing the results so far, the proposed Cross-Currency LIBOR Market Model with an incorporated 
forex smile is fully described by the following system of stochastic differential equations: 
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The correlation coefficients mlρ , , 1, 2,3m l = , can 
be chosen either by historical estimation, or by par-
simonious parameterization of the correlation func-
tion1 and subsequent calibration to the information 
extracted from occasionally observed prices of 
quanto interest rate contracts. Assuming that both 
the domestic and the foreign LIBOR volatilities 
have previously been calibrated independently to 
single-currency caps and swaptions as indicated 
above, the model still needs to be calibrated to 
available FX options if it is intended to be used as a 
pricing tool for cross-currency exotics. Therefore, 
the main purpose of this article, aside from deriving 

the CCLMM with a forex smile in (4), consists in 
the development of an effective and fast calibration 
algorithm, at the core of which a closed-form FX 
option valuation formula stands. 

2. Option pricing formulas and calibration  
routines 

2.1. FX option valuation by Fourier transform. 
Regardless of the model chosen for the evolution of 

the forward forex rate, the price at 0t  of the 
thi  FX 

option under the natural measure it
P  and under the 

equivalent measure Nt
P  is given by: 
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The1 driftless dynamics of ( )iFX t  under their own 
natural probability measure will produce the correct 
option price only if the discounting of the payoff is 
carried out using the appropriate numeraire – in this 
case the bond maturing at it . The use of any other 
measure will introduce a covariance between the 
discounting and the payoff itself, for example when 
the pricing of plain-vanilla options on the whole 
spectrum of forward forex rates ( )iFX t , 

1,...,i N= , is accomplished under a single measure 
like the terminal one. In order to recover the same 
option value, this fact has to be compensated for by 
altering the drift of the forward forex rate as shown 
previously. However, facing a complex pricing 
problem, which entails simultaneously several FX 
rates, a particular measure has to be specified and 
once it has been chosen, the presence of non-zero 
drifts is unavoidable and the need to formulate a 

                                                 
1 For the development of a semi-parametric full-rank model correlation 
structure consistent with historically estimated data refer to Schoenmak-
ers and Coffey (2003). 

model for the stochastic evolution of the underly-
ing(s) like (4) is inevitable. This has been the main 
purpose of our work – the development of a viable 
pricing model for exotic cross-currency interest rate 
instruments, which is at the same time flexible 
enough to allow for the incorporation of the entire 
market information, as of FX markets essentially 
meaning calibration to the whole range of FX op-
tions prices across all available maturities and 
strikes. As a step prior to the actual pricing of deriv-
ative structures, the calibration of the model can be 
carried out under any probability measure since we 
calibrate to plain-vanilla FX options, whose payoffs 
involve only a single forward forex rate at a particu-
lar point of time. It is acceptable to use a model 
separately calibrated for each option expiry since 
vanillas depend on the terminal distribution of the 
underlying only as opposed to exotics whose values 
usually depend on the full dynamics through time of 
a whole range of FX rates. Consequently, we revert 
every time to the natural measure 

it
P , effectively 

using for calibration always the same model though 
under different probability measure, to circumvent 
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the unpleasant dependence alluded to above, which 
will admittedly complicate the producing of a closed-
form solution to the option pricing problem.  

The value of the FX option can be rewritten in terms 
of the real part of its Fourier transform, where the 

only unknown parameter is the conditional characte-
ristic function 

0
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Similar descriptions of the option price in a different 
form have already been derived by numerous au-
thors, e.g., Bakshi et al. (2000) and Scott (1997), 
and numerically determined on the assumption that 
the characteristic function is known analytically. 
One disadvantage of the formula above is the singu-
larity of the integrand at the required evaluation 
point 0u = , which ultimately precludes the applica-
tion of the Fast Fourier Transform (FFT). Therefore, 
Carr et al. (1999) develop a new analytic expression 

for the Fourier transform designed to use the FFT to 
price options efficiently. In the appendix we propose 
a different approach, which draws directly upon 
Lévy’s inversion theorem, and avail ourselves of the 
Gauss-Laguerre Quadrature to obtain the best nu-
merical estimate of the Fourier integrals in (5). 
Therefore, the option pricing reduces to the calcula-
tion of the unknown conditional characteristic func-
tion. The dynamics directly relevant to valuing the 
FX option are: 
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It is well-known that according to the Markov property the characteristic function: 

( )0 0 1
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i

P iuY ti
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−− −= = = = =  

is determined as the solution of a partial differential 
equation (PDE) that can be found through Feynman-
Kac’s theorem. To provide a closed-form solution in 
the spirit of Heston (1993), however, we need to 
ensure the linearity of the coefficients in the related 
PDE. This property is obviously destroyed by the 
presence of the drift correction term 

14( ) ( , )iV t t tξ σ ρ  in the dynamics of the volatility 
process due to the change of measure. It becomes 
immediately apparent that the only way to explicitly 
calculate the wanted characteristic function is by 
making the drift of the volatility process an affine 

function of ( )V t  and by eliminating the stochastic 
dependence on the LIBORs via the bond volatilities 

( , )it tσ  since the asymptotic form of the drift in the 
dynamics of the LIBORs rules out linearity with 
respect to kl , 0,..., 1k i= − . The classical approach 
to handling the LIBORs is by freezing them at their 
initial value. In addition, we need to approximate 
the square root of the volatility process within the 
drift function. Consequently, the dynamics of ( )V t  
become approximately of a square-root type and 
after redefining the system of SDEs (6): 

0

0

0

0 3 4 34
0

1
0 0 0

0 0 0
1 0 0 0

2
3

1 ( )( ) ( ) , ( ) ( )
2 ( )

( ) ( )
( , ) ( , ) ( ) ( )

1 ( ) 1 ( )

1( ) ( ) ( ) ( ) ( ) ( )
2

( ) (

t ti i

j

j

j

ti

P P

i
j t t

i i t t
j j t t

Pfx fx
i i i

V tWith V t V t dW t dW t dt and
V t

L t L t
t t t t t t

L t L t

dY t t V t dt t V t dW t

dV t V t

ρ

α α
σ σ γ γ

α α

σ σ

α θ

−

=

⎛ ⎞
≈ + =⎜ ⎟⎜ ⎟

⎝ ⎠

≈ = − − ⇒
+ +

= − +

= −

∑

( ) 0 0 14 4
0

1 ( )) ( ) ( , ) ( ) ( ),
2 ( )

tiP
i

V tV t t t dt V t dW t
V t

ξ σ ρ ξ
⎡ ⎤⎛ ⎞

+ + +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

    (7) 



Banks and Bank Systems, Volume 3, Issue 4, 2008 

79 

we come by the following PDE in the backward variables and the respective boundary condition: 
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Suggested by the linearity of the PDE’s coefficients in v , we propose a solution like: 
0 0

0

( ) ( )( , , ) , (0) 0 (0) 0.C t t D t t v iuyi
t u y v e where C and Dφ − + − += = =     (9) 

By plugging this ansatz into (8), we obtain two ordinary differential equations (ODEs): 
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As shown in the appendix, the first one is a Riccati 
equation (see Oksendal (2000) Chapter 6) which can 
be solved by reducing it to a second-order linear 
ODE, whereas the second one is solved by direct 
integration. By means of their explicit solutions, as 
given by (B16) and (B18) respectively, we obtain an 
analytical expression for the characteristic function 
(9) that enables us to numerically determine the 
option price (5). 

2.2. The calibration algorithm. For illustration 
purposes, we now consider a fictitious example of 
fitting the model to FX options across five different 
expiries and strikes. It is unnecessary to accentuate 
that the procedure can theoretically be extended to 
an arbitrarily wide range of maturities and strikes at 
the expense of rising computational time since the 
number of model parameters to match increases ac-
cordingly. Market prices of FX options in basis points, 
as displayed in Table 1, for strikes generated by 

( ) ( ) ( )

( ) 1,5.0,0,5.0,15,...1

,1.0
0

−−==

= ××

j  and  i,j  where

etFXiK ji
ij

δ

δ

 (11) 

have been taken as a basis for the ensuing calibra-
tion routine.  

Table 1. Market prices of FX calls (in bp) for differ-
ent strikes and maturities 

Expiry FXopt 1 FXopt 2 FXopt 3 FXopt 4 FXopt 5 

1y 74.31572 47.68933 25.64710 11.21897 3.99027 

2y 90.20941 53.70243 23.56308 6.77430 1.26618 

3y 98.96450 56.78179 21.40343 4.11798 0.38920 

4y 103.73044 58.84490 20.92330 3.29027 0.20156 

5y 105.93154 60.10471 21.14829 3.11624 0.15548 

In the first place, we can check whether the FX op-
tion market is flat-smiled or not. The standard pro-
cedure would be to take the ATM strike, which hap-
pens to be that of the third FX option in the table 
above since ( ) 0jδ =  and consequently 

0( ) ( )j iK i FX t= , and to compute the ATM implied 
volatility by inversion of the lognormal option valu-
ation formula. The same volatility is then utilized to 
price options with different strikes given by (11). 
The results, presented in Table 2, underline once 
again the fact that FX options exhibit a pronounced 
volatility skew with ITM options being underesti-
mated whereas OTM ones are being systematically 
overestimated. From there the need stems to go 
beyond the standard geometric BROWNian motion 
and to resort to an extension of the lognormal-type 
dynamics of the forward forex rate that is based on 
stochastic volatility. 

Table 2. FX call prices (in bp) computed with the 
ATM implied volatility 

Expiry FXopt 1 FXopt 2 FXopt 3 FXopt 4 FXopt 5 

1y 
71.97134 46.15283 25.64710 11.96459 4.55733 

2y 88.39820 52.03995 23.56308 7.48320 1.54316 

3y 97.65900 55.09986 21.40343 4.78883 0.53401 

4y 102.85492 57.42792 20.92330 3.94375 0.31927 

5y 105.22879 58.83967 21.14829 3.80896 0.28176 

The calibration is performed on the FX call prices 
from Table 1, where the model prices are deter-
mined by (5). To obtain the best numerical estimate 
of both Fourier integrals, we employ the Gauss-
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Laguerre Quadrature, which is a Gaussian Quadra-
ture over the interval [0, )∞  with a weighting func-
tion ( ) xw x e−=  (see Abramowitz et al. (1972)). 
The model parameters to be calibrated are: (a) the 
parameters of the volatility process, initially set to 

0.01ξ = , 0.02α = , 0.001θ =  and 0( ) 0.01V t = ; 
(b) the FX volatility coefficients, initially set to 

[ ]fx
i iσ =  1 exp( 0.05( 0.2))i− − − , 1,...,5i = ; (c) 

the correlation coefficients, set to 
14 34 0.2ρ ρ= = − . Aiming to reproduce FX option 

values for a wide range of strikes and expiries, we 
solve the calibration problem by simultaneously 
varying the model parameters (a), (b) and (c) until 
the sum of squared basis point differences between 
model and market prices has been minimized, 
which, for the sake of completeness, is reported here 
to have been achieved at 8.56059 bp. We use a fast 
unconstrained non-linear minimization algorithm, 
the Davidon-Fletcher-Powell (DFP) conjugate gra-
dient method as described in Press et al. (1996), to 
make the distance 2∆  between the model and mar-
ket matrices as small as possible:  

( )
25

2 mod

, 1
!market el

ij ij ij
i j

FXopt FXopt Minω
=

∆ = − →∑    (12) 

The calibration has been carried out with identical 
constant weights ω , which essentially corresponds 
to an attempt to obtain the best global fit to the 
“complete” market information, as represented by 
our market prices matrix. The resulting optimal 
solution is shown in Table 3 below. 

Table 3. The best overall fit to the matrix of market 
call prices in Table 1 

Expiry FXopt 1 FXopt 2 FXopt 3 FXopt 4 FXopt 5 

1y 73.44406 47.58264 26.25862 11.46718 3.54044 

2y 89.40880 53.47140 24.14783 6.74194 0.80012 

3y 98.25958 56.37568 21.92059 3.97862 0.14489 

4y 103.30069 58.59928 21.35842 3.08668 0.05267 

5y 105.40284 59.02163 19.80163 2.06586 0.00988 

The stochastic volatility model brings about a sig-
nificant improvement over the deterministic volatili-
ty one in any case. Prices of mid-maturity FX calls 
(i.e., 3y and 4y) are reproduced with a very good 
precision. For very short- and long-maturity options 
(i.e., 5y), however, the goodness of fitting worsens 
suggesting that the assumption of a unique volatility 
process ( )V t  common to all forward forex rates 
might be too restrictive, especially when calibrating 
to a very wide range of maturities. 

In order to capture certain features of a given exotic 
instrument, one could alternatively try to achieve the 
best fit to only a specific portion of the matrix of 
market prices sacrificing the remaining part of it. 
The quality of the partial calibration will be go-
verned by the, in this case, non-constant weights ω  
assigned to the elements of the 2∆  distance func-
tion. The choice of the weights will mostly depend 
on the particular pricing problem. 

Conclusions 

We proposed an integrated Cross-Currency LIBOR 
Market Model under a uniform probability measure 
in a multifactoral environment. The chief purpose of 
our paper has been the development of a viable pric-
ing framework for exotic cross-currency interest rate 
instruments that is at the same time flexible enough 
to allow for the incorporation of as much available 
market information as possible. In terms of FX mar-
kets, on which the main focus of this work has been 
placed, fulfilling this purpose in a satisfying manner 
required the calibration to the whole range of FX 
options prices across all available maturities and 
strikes. This line of modelling has been reinforced 
by the significant volatility skew typically observed 
with FX options and the fact that it seems impossi-
ble for the most cross-currency derivatives to 
choose a particular strike, or a specific expiry of an 
FX option since they usually depend on a variety of 
strikes and maturities. The procedure eventually 
culminated in an extension of the lognormal-type 
dynamics of the forward forex rate beyond the geo-
metric BROWNian motion and the postulation of a 
stochastic volatility evolution in conformity with 
Heston (1993) based on a unique volatility, common 
to all forward FX rates, that follows a mean-
reverting square-root process. After determining an 
analytical expression for the conditional characteris-
tic function in a mildly approximate fashion for the 
sake of mathematical tractability, closed-form for-
mulas for FX option prices have been obtained and 
numerically estimated with the aid of the Gauss-
Laguerre Quadrature. The model prices computed in 
this manner served as the backbone of the ensuing 
calibration routine, by means of which we matched 
the model parameters so that the distance between 
the model and market prices matrices has been mi-
nimized. We have seen that introducing stochastic 
volatility led to a substantial improvement over the 
deterministic model in any case, although the fitting 
quality slightly worsened for very short- and espe-
cially long-dated options as compared to mid-
maturity ones. This feature has been ascribed to the 
possibility of our unique volatility process common 
to all forward FX rates being too restrictive, espe-
cially when faced with a wide maturity spectrum to 
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calibrate to. More flexibility could be introduced by 
considering a different stochastic volatility process 
for the dynamics of each forward FX rate, however, 
inevitably making the calibration more cumbersome 
because of the additional volatility and correlation 
parameters and raising the potential problem of 
overfitting the model due to the increased number of 

parameters. Above all, the pricing of cross-currency 
exotic interest rate products would become a very 
difficult task since the drift functions within the 
dynamics of both the foreign LIBOR and the for-
ward forex rate would, aside from the unpleasant 
stochastic dependence on LIBOR rates, involve 
extra intra- and intercorrelated volatility processes. 
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Appendix A. FX option pricing formula 

Based on a derivation of the inversion theorem by Gil-Pelaez (1951), we determine the probability of finishing in-the-
money, where ( )ln ( ) ( )i iFX t Y t=  and ln( )K k= , as follows: 

( )
0
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The delta of the option is somewhat convoluted, though it can be determined by similar techniques. For any positive 
numbers λ  and ε , we have: 
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Proceeding from this expression now, we obtain the step function by simply letting ε  tend to zero and λ  tend to in-
finity as shown in Gil-Pelaez (1951). Thereafter, we conveniently arrive at the wanted conditional expectation in the 
following manner: 
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essentially meaning that the delta of the option is defined by: 
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Thus, additionally observing that ( )0 0
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t t ii E e FX tφ −− = =F , the option price is readily computed in 

terms of the conditional characteristic function like: 
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Appendix B. Solution of the ordinary differential equations 

Starting with the Riccati equation in (10): 
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t tD aD bD c with a b iu t
t V t

c u t iu t

σξ ξ ρ σ ξρ α

σ σ

∂
= + + = = + −

∂

= − −

 (B15) 

it has been led back to a second-order linear differential equation by substitution: 
' ' ' 2

' ''
' 2 '' 'sin .

Put aD v v aD v v bv ca

u uSubstitute v and ce v v u bu acu
u u

= ⇒ = ⇒ = + +

= = − + ⇒ = − −
 

The solution ansatz is of an exponential type and is plugged into the ODE to be solved: 

0

2
( ) 2

1,2
40 ,

2
z t t b b ace z bz ac z− ± −

⇒ − + = ⇒ =  

ultimately arriving at the following general solution along with the respective boundary condition: 

( ) ( )
2 2
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0

4 4
2 2

'
'

0

2 2
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4 4 0.
2 2
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However, we are not aimed at finding an explicit solution of the second-order linear differential equation. We do not 
need to compute A  and B  separately, which is by the way based on a single boundary condition impossible, the ratio 

/A B  would suffice since we actually seek to determine 0( )D t t− . Having made this crucial observation, we obtain: 
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 (B16) 
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The second ODE: 

0 0 14
0

1_ . , _ ( ) ( , )
2 i

C D with V t t t
t

α θ α θ αθ ξ σ ρ∂
= = +

∂
 (B17) 

is solved by direct integration: 
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 (B18) 

In conclusion, we hold (B16) and (B18) to be the solutions of the ordinary differential equations in (10) being integral 
part of the characteristic function (9), whereby a , b , c  and _α θ  are the substitutes defined previously by (B15) 
and (B17) respectively. 


