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In this work effect of laser annealing on properties of surface of CdxZn1-xTe (CZT) films was studied. 

CZT layers were deposited by co-evaporation of CdTe and ZnTe using close-spaced vacuum sublimation 

(CSVS) method. Structural properties and chemical composition of films were studied by X-ray Diffraction 

(XRD) and Energy Dispersive Spectroscopy (EDS). The annealing of the sample was carried out with the 

help of micro-Raman infrared laser of 785 nm wavelength at maximal 100x magnification. It was estab-

lished that laser annealing of the surface substantially causes redistribution of Zn atoms. More detailed 

study of the sample by the scanning of surface with the micro-Raman method allows to determine trend in 

this process and to detect Te-rich zones. Improvement of the crystal quality near annealed area of the thick 

film was achieved. 
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1. INTRODUCTION 
 

Single crystals of CZT ternary semiconductor are 

widely used for the X and gamma rays radiation detec-

tors [1,2]. It could be explained by the fact that band 

gap of this material can be adjusted over a wide range 
from 1.46 to 2.26 eV by the changing of Zn concentra-

tion. In turn, increasing in Zn concentration leads to 

decreasing in conductivity of the material which pro-

vides improvement of the detectors performance [3, 4]. 

Last time, in order to produce low-cost large area 

imaging X-rays sensors for medical application the 
thick CZT polycrystalline films are used [3, 5].  

Besides, possibility of using of CZT films with grad-

ed bang gap as an absorbing layer of thin film solar 

cells is reported [6]. Graded band gap in CZT films can 

be achieved with trough-thickness gradient of Zn con-
centration [7]. 

The main problems in producing of high perfor-

mance detectors based on thick CdZnTe polycrystalline 

films are low crystal quality of the films comparatively 

with the bulk material and difficulties in controlling of 
Zn atoms volume distribution. The laser annealing is 

used for enhancement of crystal quality of material and 

for redistribution of Zn atoms [8,9]. The effect of laser 

annealing on main properties of bulk CdZnTe crystal is 

well known, however the influence of high power laser 
irradiation on structural properties of the thick poly-

crystalline CdZnTe films is much less studied. The 

main task of present research is to obtain high quality 

CdZnTe thick films suitable for application in hard ra-

diation detectors. Then obtained sample was used to 
study effect of annealing of the surface by micro-Raman 

infrared laser in order to achieve improvement of the 

crystal quality of the thick film. Other important point 

of this study is to establish possible application of mi-

cro-Raman laser for modification with high spatial lo-
cality of the CdZnTe thick film surface. 

2. EXPERIMENTAL DETAILS 
 

The CZT films were deposited on Mo coated glass 

substrates by vacuum co-evaporation of the pure CdTe 

and ZnTe powders from independent sources in closed 

space chamber [10]. Temperature of CdTe evaporator 
was Te(CdTe) = 893 K, temperature of ZnTe evaporator 

was Te(ZnTe) = 993 K, substrate temperature was  

Ts = 673 K. X-ray diffraction analysis (XRD) was used 

to study the structural properties of the obtained lay-

ers, chemical composition of the films was studied by 

Energy Dispersive Spectroscopy (EDS). The Renishaw 
equipment was used to study Raman spectra of films. 

Spectra were measured with excitation of surface by 

infrared 785 nm laser. We used low-power excitation, 

namely, 0.01% from nominal power of laser. Output 

signal measurement was carried out during 5 accumu-
lations; duration of each measurement was 120 sec.   

The annealing of the sample was carried out with 

using of 50% from nominal power of micro-Raman in-

frared laser at maximal 100x magnification. It is al-

lowed to provide high spatial locality of the annealed 
area on the surface of the sample. Namely, the regular 

shape stripwise annealed area with about 2 µm width 

was obtained. 
 

3. RESULTS AND DISCUSSION  
 

Investigation of the film by the scanning electron mi-

croscopy (SEM) shows that obtained sample is polycrys-

talline with average grain size of about 5 µm and thick-
ness of about 30 µm (Fig. 1, a). 

The analysis of XRD patterns (Fig 1, b) was per-

formed by comparison of the inter-planar distances as 

well as relative intensities measured from the samples 

and reference Joint Committee on Powder Diffraction 
Standards (JCPDS card № 15-0770) data. 
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Fig. 1 – Structural properties of CZT film: SEM image of CZT 

surface (a), XRD pattern (b). 

 

It was determined that the sample has cubic struc-

ture with pronounced (111) texture. The high texture 

and small value of the full width at half maximum of the 
(111) peak are the evidence of high crystal quality of the 

film. 

It is well-known that variation of Zn concentration in 

CZT films causes deformations in crystal lattice and 

changes the lattice parameter, wherein these changes 
are described by the linear dependence [11]. In this work 

lattice parameter was calculated from position of (111) 

peak and had a value a=0.64465 nm. The Zn concentra-

tion of 9% was determined according to lattice parameter 

value using the reference data of lattice parameter-zinc 
concentration dependencies [11]. This value is in a good 

agreement with the value of 11 % Zn concentration ob-

tained with the help of EDAX method. 

The Raman spectra of the annealed and non-

annealed samples are presented on Fig.2. According to 

the reference data [12,13] with increasing of Zn concen-
tration position of LO1 mode is shifted from those in pure 

CdTe (167 cm-1). In particular, the CdTe (LO1) mode is 

blue-shifted from the position of CdTe (LO1) of pure 

CdTe (167 cm-1), while ZnTe (LO1) mode is red-shifted. 

Thus obtained Raman spectra of non-annealed surface 
(point 1 on Fig. 2) is typical for CZT. 

 
 

 
 

Fig. 2 – Optical image of annealed surface (a) with labels of 

zones 1, 2, 3, 4. Raman spectra (b) for zones 1, 2, 3, 4. 
 

This Raman spectrum includes CdTe(LO1) at 161,5 

cm-1 and ZnTe(LO1) at 181 cm-1 modes, and their phonon 

repetitions at 342 cm-1 and 354 cm-1, which were as-
signed to CdTe and ZnTe respectively. Presence of LO2 

repetitions is evidence of high crystal quality of the film. 

Also this spectrum includes the weak peak of Te(E) 

mode. 

Presence of tellurium becomes more appreciable at 
approach to the annealed zone. Measurements of spec-

trum in point 2 (Fig. 2) has shown that intensive peak of 

A1(Te) mode is appeared on spectrum and intensity of 

E(Te) mode peak is increased. Generally Te-like modes 

become dominant, whereas peak intensity of LO1(CdTe) 
and LO1(ZnTe) modes is significantly decreasing. This 

could be explained by evaporation of Cd atoms from the 

surface under intensive laser irradiation and formation 

of Te-rich surface. Moreover shift of LO1 mode peaks 

concerning their position on spectrum of non-annealed 
area was observed, which is the evidence of changing of 

Zn concentration on the surface of the film. At the same 

time studying of area, which is placed directly near the 

annealed area (point 3, Fig. 2), didn’t observe Te-rich 

zones. At that point peak intensity of Te-like modes was 
significantly smaller than LO1(CdTe) mode. It is neces-

sary to underline, that comparative peak intensity of 

LO1(ZnTe) mode significantly decreased concerning peak 

intensity of LO1(CdTe) mode in comparison with spec-

trum measured on non-annealed surface (point 1, Fig.2). 
The most probable explanation of such changes in spec-

trum is decreasing of Zn atoms concentration due to its 

diffusion from into the volume of the film from the sur-

face. 

Analysis of Raman spectrum measured directly on 
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the annealed zone (point 4 on Fig. 2) has shown that 

positions of LO1(CdTe) and LO1(ZnTe) peaks wasn’t 
changed in comparison with spectrum, measured in 

point 1. At the same time comparative intensity of peaks 

became approximately equal, which can be caused by 

decreasing of Zn concentration on annealed surface. It is 

necessary to underline the fact, the that surface directly 
on the annealed zone isn’t Te-rich, however the effect of 

evaporation of Cd atoms from the surface is typical for 

laser annealing of CZT. 

The appearance of additional LO3 repetition on the 

Raman spectra in the zones 3 and 4 of annealed sample 
is the evidence of improvement of crystal quality due to 

re-crystallization of the crystal lattice on the surface. 

Also scanning of annealed surface (micro-Raman) 

was carried out, namely rectangular area about 17×80 

µm which covered annealed and non-annealed surface 
(Fig.3) was studied. Scan step was approximately 1 µm, 

so measuring was performed on 1300 points of the sur-

face. 

Intensity of peak of LO1 mode may be considered as 

the criteria of crystalline quality of the material, distri-
bution of intensity allows to study its changing in differ-

ent zones of the surface. On the Figure 3 (a) changing  of 

intensity of LO1 mode peaks is presented, namely distri-

bution of intensity of the signal measured in the range of 

frequencies from 150 to 200 cm-1 is shown. As it is seen 
from Fig. 3 intensity of LO1 peak is changing in different 

points of the surface, this changing is similar to meas-

urement of single spectrum (Fig. 2). The surface of the 

sample can be roughly divided into four zones. The most 

intensive LO1 mode is observed on the borders of an-
nealed surface, which correspond to the zone 3. On the 

annealed stripwise surface (zone 4) intensity of LO1 

mode is reduced and has an intensity approximately 

equal to intensity of the mode on non-annealed surface 

(zone 1). The lowest intensity of LO1 mode peak was ob-
served on the zone between non-annealed area and the 

border of annealed stripwise area (zone 2). 

We fixed similar distribution of intensity over the 

surface for LO2 phonon repetition, which is characterized 

by presence of four zones. Studying of distribution of LO2 

mode intensity confirmed improvement of crystal quality 
on the borders of annealed surface (zone 3). 

In order to determine Te-rich zones on the surface we 

studied distribution of intensity of A1(Te) mode peak 

over the surface. This allowed to establish that the most-

ly Te-rich zone is zone 2 on the surface of the film. 
Thereby the effect of laser annealing on distribution 

of different phases in CZT thick film was established. 

 

4. CONCLUSION  
 

In this work we determined that it is possible to ob-

tain quality CZT thick films by vacuum co-evaporation of 

the pure CdTe and ZnTe powders from independent 

sources in closed space chamber  
The annealing of the sample was carried out with the 

help of micro-Raman infrared laser. It is allowed to pro-

vide high spatial locality of the annealed area on the 
surface of the sample, the regular shape stripwise an-

nealed area with about 2 µm width was obtained. 

 
 

Fig. 3 – Distribution of intensity of Raman spectrum peaks on 

the surface of sample: LO1 mode (a), LO2 mode (b), Te(A1) 

mode (c). 
 

More detailed study of the sample allowed to deter-

mine four zones around annealed area. In particular, the 

following zones were detected: 1) unchanged zone which 

is placed on a sufficiently large distance from annealed 

area; 2) Te-rich zone formed as a result of the evapora-

tion of Cd atoms from the surface; 3) very Zn-poor region 

near stripwise annealed area, which has enhanced crys-

tal quality; 4) more Zn-rich and Te-rich material on 

stripwise annealed area, this zone also has enhanced 

crystal quality. 

Our studies have shown that the laser annealing can 

be applied for enhancement of crystal quality of poly-

crystalline CZT thick films. Obtained results could be 

used to improve efficiency of X-ray detectors based on 

CZT solid solutions. 
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