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In the paper, dipole-exchange spin excitations in a composite nanorice-type nanoparticle (prolate rota-

tion ellipsoid) are investigated theoretically. A nanorice with a non-magnetic core and a shell composed of 

an uniaxial ferromagnet is considered. Spin dynamics in the above-described nanosystem is described us-

ing the linearized Landau-Lifshitz equation (in the magnetostatic approximation) with the addends that 

consider the magnetic dipole-dipole interaction, the exchange interaction and the anisotropy effects. An 

equation for the magnetic potential of the above-described spin excitations is obtained. For the case of a 

thin shell, a solution for the above-mentioned equation in the form of a combination of the generalized 

spheroidal functions is proposed. For the above-described case, a dispersion relation for such spin excita-

tions is also found. 
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1. INTRODUCTION 
 

Spin waves in different kinds of nanosystems are 

an actual and popular topic of research. Magnonics – 

a subfield of modern solid state physics that studies 

spin waves in nanosystems [1] – and spintronics 

(spin electronics) – a sub-field of modern solid state 

physics that studies the properties of the electron 

spin and ways of its manipulations in solid-state de-

vices [2] – are promising, in particular, for creating 

new information storage, transmission and pro-

cessing devices [3–5]. 

Magnetic properties of a nanosystem are known 

to depend essentially on its shape and size. There-

fore, spin waves are studied in different types of 

nanosystems – thin films [6], micron-sized magnetic 

quantum dots [7], magnetic nanowires [8] and so on 

– individually. Magnetic propert (2)
||R ies of (1)R shell-

type magnetic nanosystems [9,10] remain poorly re-

searched at rhe moment. In particular, synthesized 

recently shell-type ellipsoid magnetic nanoparticles – 

magnetic nanorice [11-13] – remain practically unre-

searched. However, they exhibit unique properties 

that are not observed in a nanosystem with higher 

degree of symmetry. This makes study of a magnetic 

nanorice (in particular, of spin excitations in a mag-

netic nanorice) actual. 

In the paper, dipole-exchange spin excitations in 

a nanorice cluster with the shape of a prolate rota-

tion ellipsoid are investigated. The investigated na-

norice consists of a non-magnetic core and a shell 

comprised of an uniaxial ferromagnet. For the above-

described spin excitations, equation for the magnetic 

potential in the magnetostatic approximation (con-

sidering the dipole-dipole interaction, the exchange 

interaction and the anisotropy effects) is obtained. 

The equation is solved approximately for the case of 

a thin shell. A dispersion relation for this case  is ob-

tained. 

 
2. SETTING OF THE PROBLEM 

 

Let us consider a nanoshell with the shape of a 

prolate rotation ellipsoid (nanorice particle) com-

posed of a non-magnetic core and a ferromagnetic 

shell. Therefore, the core of the nanorice is bounded 

by a rotation ellipsoid with semiaxes (1)
||R , , and the 

external boundary of the particle is a rotation ellip-

soid with semiaxes , (2)R . Let us introduce prolate 

spheroidal coordinates (ξ,η,φ) with the length pa-

rameter a (so the internal and the external boundary 
of the shell is described by the equations ξ  ξ1 and 

ξ  ξ2, correspondingly, where the constants 
 1

1 || /R a  ,  2
2 || /R a  ) and assume that the ferro-

magnet is of an local ”easy axis” type (so the ground 

state magnetization 0M  is directed along the axis ξ, 

curvature of which is considered negligible inside the 

shell). Let us denote the ferromagnet parameters as 

follows: the exchange constant α, the uniaxial ani-

sotropy parameter β and the gyromagnetic ratio γ. 

We neglect the dissipation – and, therefore, the spin 

excitations damping in the shell, discarding relaxa-

tion terms in the Landau-Lifshitz equation. 

Let us consider linear spin excitations in the 

above-described shell (so the magnetization m  and 

the magnetic field h  of the excitation can be consid-

ered as a small perturbation of the overall magneti-

zation density and the overall internal magnetic 

field, correspondingly). Therefore, the magnetization 

density 0=M M m , 0m M , and the magnetic 

field inside the shell ( ) ( )
0=i iH H h , 

( )
0<< ih H  (here 

0M  and ( )
0
iH  are the ground state magnetization and 
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the internal magnetic field, correspondingly). 

The task of the paper is to obtain an equation for 

the magnetic potential of the above-described 

excitations (in a magnetostatic approximation) and, 

after solving this equation, to obtain an dispersion 

relation of these excitations. 
 

3. SYSTEM OF EQUATIONS FOR A SPIN EXCI-

TATION IN A NANORICE SHELL 
 

Let us write down the Landau-Lifshitz equation for 

linear spin excitations in the above-described nanorice 

shell. The Landau-Lifshitz equation without dissipa-

tion term can be written as follows (see, e.g., [14]): 
 

    
2 2

( )
0 0 0 02 2

0

1
= ,i

i i

m m
M h n mn M H M n m

t x M
   
     

              
  (1) 

 

here n  is a unit vector along the anisotropy axis of the 

system (for our system, it coincides with the unit vector 

e ). After substituting the magnetization perturbation 

in a periodic by time form 
 

            0 0, = exp , , = expm r t m r i t h r t h r i t   (2) 

 

into the Landau-Lifshitz equation (1) and considering 

( )
0 0|| || ||iM H n e , 

0m e  as well as the system 

symmetry, we obtain the first necessary relation be-

tween the magnetization and the magnetic field. In 

order to obtain the second relation, let us use the mag-

netostatic approximation (see, e.g., [14]; possibility of 

using this approximation infers from the fact that the 

above-described configuration of the current does not 

create a magnetic field). Considering h  as a potential 

field, so that h   , 0 0=h  ,    0= expr i t   

(here Φ is a magnetic potential), we can obtain the 

sought relation from the Maxwell equation 

= 4divh divm  . Therefore, the sought system of 

equations can be written in the following form: 
 

( )
0

0 0 0 0 0

0

0 0

=

4 = 0

i

z

H
i m M e h m m

M

divm

   



    
                


 

 (3) 

 

Using this system of equations, we can find the sought 

equation for the magnetic potential. 

 

4. EQUATION FOR THE MAGNETIC POTEN-

TIAL 
 

In order to obtain the equation for the magnetic po-

tential of a spin wave in the system, let us eliminate 

the magnetization perturbation in the system of equa-

tions (3). 

Let us substitute the second equation of (3) into the 

first one. After certain transformations we obtain 
 

 
   

0 0

0

2 0
02 2 2

=

4 1
1 ,

4

i
div e m

M

a







  
   

     

 
      

   

 (4) 

 

here ( )
0 0= /iH M   . After further transformations 

one can obtain the sought relation for the magnetic 

potential in the following form: 
 

   

 
 

 

2

02 2
0

2 0

2 2 2

4

4
4 1 0

M

a


    



   
  

 
         

 

 
     

   

 (5) 

 

Thus, we have obtained an equation for the magnet-

ic potential of the spin excitations described in the pre-

vious chapter. Let us find a dispersion relation for 

these excitations using the above-written equation. 

 

5. DISPERSION RELATION 
 

In order to find the sought dispersion relation, let 

us substitute a solution of (5) in the form of the combi-

nation of the spheroidal functions: 
 

  0( , , ) ( ) ( )expR S im        , (6) 

 

here the functions R and S satisfy the following equa-

tion: 
 

   

   

2
2 2 2

2

2
2 2 2

2

1 ( ) 1 0
1

1 ( ) 1 0
1

d dR m
ka R

d d

d dS m
ka S

d d

  
  

  
  

   
              


  

            

,(7) 

 

λ is the variables separation constant and m is an arbi-

trary integer. The solution (6,7) satisfies the Helmholtz 
equation Δ Φ0  – k2Φ0 for the function Φ0. After re-

placement of the functions R and S with renormalized 
functions R(ξ)  R1(kaξ), S(η)  S1(kaη) – where k is a 

generalized wavenumber – and substituting them into 

the equation (5) one can obtain 
 

   

 
 

 

2
2 2 2

02 2
0

2 2 2

2
2 2

02

4

4
4

( ) 1 0
1

k k k
M

a

m
ka


    



  
 

 


 
        
 

   


 
        

 (8) 

 

As it can be seen, the equation (8) contains a varia-

ble component 

 

 

2
2 2

2

2 2 2

( ) 1
1

m
ka

a

 


 

  



, so the function 

(6) is not, generally speaking, a solution of (5). Howev-

er, it can be considered as an approximate solution in 
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the case when this variable component can be consid-

ered approximately constant. In particular, this can be 

done when the shell is thin, so condition  

(ξ2 - ξ1)/ ξ1 << 1 (which is equivalent to the condition 

 (2) (1) (1)
|| || ||/ 1R R R  ) fulfils and, at the same time, the 

particle is not strongly prolate, so the condition  

2
1 1   (or      

2 2 2
(1) (1) (1)
|| ||/ 1R R R

 
  

 
, which is 

equivalent) does not fulfill. In this case,  
 

 

 

2
2 2

2 2 4 22
0 0

2 42 2 2
0

( ) 1
( )1

m
ka

ka m
const

aa

 
 

 

  
 

 


 (9) 

 

where  2 2
0 1 2 / 2    . Therefore, after considering 

k ~ 1 / d (the fact that implies from the physical sense 

of k) and expanding the constant λ into series  

      
2 2

2 1lm ka ka l m ka          (10) 

 

where l, m are the corresponding quantum numbers 

(this form of expansion is obtained, e.g., in [15]) one can 

finally obtain an approximate dispersion equation in 

the form 
 

   

  
 

2
2 2 2

2 2
0

2 2 4 2
0 0 2

2 4
0

4

2 1 ( )
4 0

k k k
M

ka l m ka m
k

a


    



 
  



 
       
 

   
  

 (11) 

  

Therefore, the dispersion relation for this case can be 

written as follows: 

 

 
  

   
2

2 6 4 3 2 2 2 20
02 2 4 2 4

0 0 0

2 1 4 4
2 4 2 1

l mM m
k k k k a l m k m

k a a a

  
       

  

   
          

 

 (12) 

 

Note that the length of spin waves should be of the 

same order of magnitude or more with the exchange 

interaction length (that has an order of several na-

nometers for typical ferromagnets). At the same 

time, mean thickness of typical nanoshells has ap-

proximately the same order with the exchange length 

or slightly exceed it. Therefore, for such typical 

nanoshells only one non-zero “radial” – with 

  2 12 /k a     – can be excited. 
 

6. CONCLUSIONS 
 

Thus, we have investigated dipole-exchange spin 

excitations (standing spin waves) in a nanorice parti-

cle with the shape of a prolate rotation ellipsoid. The 

particle consists of a non-magnetic core and a shell 

composed of an “easy axis” uniaxial ferromagnet. For 

such excitations, a differential equation for the mag-

netic potential in the magnetostatic approximation 

with account for the dipole-dipole magnetic interac-

tion, the exchange interaction and the anisotropy 

effects has been obtained. The equation has been 

solved for the case of a thin (compared to its size) 

shell with the semiaxes relation that is close to unity 

(      
2 2 2

(1) (1) (1)
|| ||/ 1R R R

 
  

 
); for this case, a dis-

persion relation for the above-described spin excita-

tions has been obtained. 
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