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Abstract. In this paper we have presented a time-domain approach to parametric iden-
tification of state-space dynamic models comprised both an equation of motion and a sys-
tem potential (a performance measure). The proposed techniques have been elaborated in
order to obtain high simulation and forecast properties and applied to systems of non-
stationary accelerator, gradient systems, and linear-quadratic stationary systems. We
have also demonstrated a new concept of system potential specification in case of linear-
quadratic stationary systems. It is based on the principle of its basis decomposition as
an element of energy space. All models and algorithms have been approbated using real
statistical data for models of macroeconomic dynamics.
Keywords: Parametric identification, Performance measure, Non-stationary accelera-
tor, Gradient system, Macroeconomic dynamics

1. Introduction. Dynamic systems design is one of the most urgent and difficult issues
in different branches of science. Basically, it has three essential practical implications:
simulation, forecast, and optimization. The first one is purely retrospective, while the
others allow anticipating system dynamics. It is especially useful for analysts. This paper
deals with techniques aimed at simulation and forecast. Thus, the quality of applied
methodology will be considered in terms of simulation or forecast properties inherent in
the resulted models.
The core issue of dynamic systems design is identification methodology and its practical

efficiency. Basically, two types of concepts are common in the field of system identifica-
tion [12]. The first one assumes full or partial specification of the relationship between
systems inputs, states and outputs, while a number of unknown parameters should be
estimated. Such an approach is called a grey box model. It uses parametric identification
techniques (lest squares, general method of moments, maximum likelihood technique)
[5, 1]. The other concept is a black box model, which assumes no prior specification and
uses both parametric and non-parametric identification techniques (transient response
analysis, Fourier analysis EFTE) [4, 21]. System identification can also be carried out in
either the time (applying Markov Parameters [8], subspace system identification method
[13]) or frequency domain (using singular value decomposition of Hankel matrix of Markov
parameters [8]). This paper pertains only the time-domain identification within grey box
model framework.
The main problems which arise in this area are computational difficulties connected

with numerical realization of optimization algorithms; bias, inefficiency or inconsistency
of estimators caused by failure to meet all preconditions of classical estimation tech-
niques; insufficient precision and inadequacy of models. That results in low simulation
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and forecast properties. Furthermore, standard time-domain identification methods deal
exclusively with parameters of a state equation (a law of dynamic system motion). That
allows one to skip the accompanying problem of a system potential (or a performance
measure) identification. In this paper performance measure is specified as a complimen-
tary internal characteristics of a dynamic system interconnected with a law of its motion.
A performance measure can not be considered as additional state variable to avoid cor-
relation problem which may apparently appear in such models. Moreover, presence of a
performance measure provides the model with an extra advantage of using it in optimiza-
tion problems.
Thus, we intend to demonstrate a new effective computational approach to time-domain

parametric identification of state-space dynamic systems comprising both a law of motion
and a system potential. Actually, the paper is organized as follows. Section 2 presents the
general problem statement of state-space dynamic systems identification. The proposed
identification techniques are elaborated in Section 3. Section 4 demonstrates results of
approbation, based on real statistical data for models of macroeconomic dynamics. Even-
tually, we make a conclusion in Section 5.

2. Problem Statement and Preliminaries. We would like to confine ourselves to
systems described by ordinary differential equations (in state variable form). Thus, let
{x(t)} = {x(t) ∈ En

¯̄
t0 ≤ t ≤ t1} be a state trajectory of a dynamic system, a

continuous vector-valued function. Its values are state column-vectors x(t) = (xi)
i=1, n

from n-dimensional Euclidean space at time t. Similarly, let {u(t)} = {u(t) ∈ Er ¯̄ t0 ≤
t ≤ t1} be an input trajectory, a piecewise continuous vector-valued function. Its values
are input column-vectors u(t) = (uj)

j=1, r from r-dimensional Euclidean space at time t.
Here and further on the simplifying assumption is made that the states are all available
for measurement. Then the dynamic system may be described by n first-order differential
equations in the matrix form:

ẋ(t) = f(x(t), u(t), t), (1)

where f(· · · ) is a vector of continuously differentiable functions. Its specification depends
on physical interpretation of (1) [7].
Let G be a system potential, an empirical continuously differentiable function of the

form:

G = G(x(t), ẋ(t), u(t), t). (2)

Let us divide the continuous time domain [t0, t1] into N discrete points of time. Sup-
posing at every point of t = 0, 1, . . . , N − 1 there is a statistical information xt about
state column-vector x(t) and statistical information Gt about system potential G(t). If
f(· · · ) and G are specified with some functional forms, then the task is to identify system
(1), (2) so that the congruencies

xt ∼= x(t) and Gt ∼= G(t) for t = 0, 1, . . . , N − 1
are performed with a certain precision.

3. Time-domain Parametric Identification. Generally speaking, time-domain para-
metric identification requires discretization of the examined system. Thus (1), (2) should
be transformed from the differential to difference form. As a result, for every t from
t = 0, 1, . . . , N − 1

G = G(x(t),∆x(t), u(t), t), (3)

∆x(t) = f(x(t), u(t), t), (4)
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where differences x(t) may be either forward

∆x(t) = x(t+ 1)− x(t), t = 0, 1, . . . , N − 2 (5)

or backward [17]

∆x(t) = x(t)− x(t− 1), t = 1, 2, . . . , N − 1. (6)

As investigation of forecast properties is essential in this paper, we will use backward
differences (6) for further research.
The dynamic system presented by (3), (4) may be identified while using two different

concepts. According to the first one (Section 3.1), a potential G identification is primary.
According to the second concept (Section 3.2), a law of motion f(· · · ) is proposed to
be identified firstly. Section 3.1 is devoted to non-stationary accelerators and gradient
systems identification. Stationary linear-quadratic (LQ) systems are examined in Section
3.2.

3.1. Non-stationary accelerators and gradient systems. In this section we will
derive effective techniques for two classes of time-variant dynamic systems identification.
They are frequently used in macroeconomic modeling [18] and differential games theory
[11]. Following the works [15, 20], let it be that the law of motion (1) and the potential
(2) form a circuited (closed) system. Besides, we will specify G only with state variables.
Then non-stationary accelerator is a system of the form:

G = G(x(t)),

ẋ(t) = u(t)G.
(7)

Here the dimension r of the input column-vector u(t) equals to n. Model (7) belongs to
zero-order differentiating elements [10].
We will use the following model for gradient systems:

G = G(x(t)),

ẋ(t) = U(t)

µ
∂G

∂x

¶tr
,

(8)

where U is time-variant n × n diagonal matrix with the coordinates {uj}j=1,n on its
diagonal. From here on we assume that a derivative of a scalar over a column (row)
vector is a row (column) vector [7].
Although both non-stationary accelerators and gradient systems are quite different

physically, technically, either of them has the same identification technique. It should be
noted that the problem of systems (7) and (8) identification naturally gets transformed
into inverse dynamic problem. Given the measurements of state variables and identified
potential, it deals with input identification [16].
Let vector g = (gl)

l=1, n state for the n-dimensional column-vector (G,G, . . . , G)tr in case

of non-stationary accelerator and for the n-dimensional column-vector
³
∂G
∂x1
, ∂G
∂x2
, . . . , ∂G

∂xn

´tr
in terms of gradient system. Then the general dynamic process will take the form of

ẋ(t) = U(t)g. (9)

At the beginning the potential G should be specified. Firstly, it may be any smooth
function to provide the existence of the first derivative. Secondly, it should be convenient
for further research. Basically, log-linear form will be sufficient for the analysis of the
first-order effects. The second order effects are usually examined by trans-log forms [6].
G is specified here as a multiplicative Cobb-Douglas function [19], i.e.

G(x1, x2, . . . , xn) = a0x
a1
1 x

a2
2 · · · xann , (10)
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or in the log-linear form

lnG(x1, x2, . . . , xn) = ln a0 + a1 lnx1 + a2 ln x2 + · · ·+ an ln xn. (11)

Parameters from (10) may be easily identified. Ordinary least squares (OLS) estimation
for the linearized model (11) can be applied here.
It is also convenient to use polynomial specification of inputs uj(t):

uj(t) = bj0 + bj1t+ bj2t
2 + · · · bjkj tkj , j = 1, 2, . . . , n. (12)

Generally speaking, the order kj may be chosen upon different considerations: to ensure
high simulation or forecast properties, to increase adequacy of the model, etc. Neverthe-
less, the substantial restriction to achieve all this goals is that the higher the order kj in
(11) the lower the degree of freedom. The latter is undesirable for practical application.
Further on this issue will be tackled with in details.
Given the identified system potential G and specified input u(t), the equation of motion

(9) identification is proceeded to. Using backward difference scheme (4), (6), we arrive at
the following difference equations for t = 1, 2, . . . , N − 1 and i = 1, 2, . . . , n:

xi(t) = xi(t− 1) + bi0 · gi|t + bi1 · t · gi|t + · · ·+ biki · tki · gi|t + εi(t), (13)

where εki(t) is a random disturbance, or if presented in the matrix form:⎛⎜⎜⎜⎝
gi|t=1 gi|t=1 . . . gi|t=1
gi|t=2 2 gi|t=2 . . . 2kigi

¯̄
t=2

...
...

. . .
...

gi|t=N−1 (N − 1)gi|t=N−1 . . . (N − 1)kigi
¯̄
t=N−1

⎞⎟⎟⎟⎠
⎛⎜⎜⎝
bi0
bi1
...
biki

⎞⎟⎟⎠+

+

⎛⎜⎜⎝
εi(1)
εi(2)
...

εi(N − 1)

⎞⎟⎟⎠ =
⎛⎜⎜⎝

xi(1)− xi(0)
xi(2)− xi(1)

...
xi(N − 1)− xi(N − 2)

⎞⎟⎟⎠ .
The other identification methodology is based on integral specification of the equation

of motion (9):

x(t) = x(t0) +

tZ
t0

U(t)gdt. (14)

Substituting (10), (12) in (14) and using left-hand Riemann sums approximation for
integrating, we arrive at a discrete counterpart of the model (14) for t = 0, 1, . . . , N − 1
and i = 1, 2, . . . , n:

xi(t) = x
∗
i (t0) + bi0

t−1X
j=0

gi|t=j + bi1
t−1X
j=0

jgi|t=j + · · ·+ biki
t−1X
j=0

jkigi|t=j + νi(t), (15)

where νi(t) is a random disturbance, or if presented in the matrix form:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
1 gi|t=1 gi|t=1 . . . gi|t=1
1

1P
t=0

gi|t
1P
t=0

tgi|t . . .
1P
t=0

tkigi
¯̄
t

...
...

...
. . .

...

1
N−2P
t=0

gi|t
N−2P
t=0

tgi|t . . .
N−2P
t=0

tkigi
¯̄
t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎝
x∗i
bi0

bi1
...

biki

⎞⎟⎟⎠+
⎛⎜⎜⎜⎜⎝

ν∗i (0)
νi(1)
νi(2)
...

νi(N − 1)

⎞⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎝

xi(0)
xi(1)
xi(2)
...

xi(N − 1)

⎞⎟⎟⎟⎟⎠
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Notice: x(t0) from (14) is not equal to x∗(t0) from (15), and x∗(t0) is assumed to
be unknown. This allows obtaining regressions with constant terms represented by (15).
Model (13) does not contain a constant term though. The latter requires some adjustments
when applying classical techniques to parameters identification [22]. Further we will use
both scheme (13) and (15) to compare them from the view-point of simulation and forecast
properties.
But we still have to identify the order kj from (12). The order ki will be obtained

under conditions of forecast confidence intervals minimization, while forecast properties
of regression models are especially substantial for practical applications. The latter is
defined as follows for the forecast value of state variable xi(N):

x̂i(N)− δtα < xi(N) < xi(N) + δtα, (16)

where x̂i(N) is a point forecast; tα is a percentile of Student’s distribution with α, level
of significance; δ is a standard error of forecasting [14].

3.2. Stationary LQ systems. Let us consider the general form of a linear stationary
process:

ẋ(t) = Ax(t) + Bu(t), (17)

where A and B are fixed n× n and n× r matrices with unknown elements.
In this paper we suggest supposing B = I and A = {aij}j=1, ni=1, n as a symmetric matrix.

This allows putting an interpretation on input u(t) and considering A as a matrix of some
quadratic form [7]. In this case we may also elaborate an energy approach to identification
of A.
Let system (17) take a form of

ẋ(t) = Ax(t) + u(t). (18)

Model (18) is an open lag model. It is overdetermined having r degrees of freedom
(u(t) 6= 0). Similarly, the model

ẋ(t) = Ax(t) (19)

is called a closed lag model [10]. Then vector-valued function u(t) may be considered as
a deviation of the open lag model (18) from the closed lag model (19). Obviously, u(t)
is characteristics of external impacts on the dynamic system. This allows treating input
u(t) as a control parameter.
Let us build up the following difference model using (6) to identify the symmetric matrix

A for the open lag model (18), :

∆x(t) = Ax(t) + v(t), (20)

where v(t) = (vi(t))
i=1, n is a discrete counterpart of u(t). Then let (20) be transformed

into regression model of the form⎧⎪⎪⎪⎨⎪⎪⎪⎩
∆x1 = a10 + a11x1 + a12x2 + · · ·+ a1nxn + w1,
∆x2 = a20 + a12x1 + a22x2 + · · ·+ a2nxn + w2,

· · ·
∆xn = an0 + a1nx1 + a2nx2 + · · ·+ annxn + wn,

(21)

where a0 = (ai0)
i=1, n is a vector of fixed coefficients, required from econometric consider-

ations; w = (wi)
i=1, n is a vector of random disturbances.

The following parametric iterative procedure for matrix A identification has been es-
tablished. Let us first estimate parameters of n regressions from (21) separately. OLS as
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an estimation method can be used. It is proposed that all non-diagonal elements of A are
averaged according to the formula

aavij =
a∗ij + a

∗
ji

2
, i, j = 1, 2, . . . , n,

where
©
a∗ij
ªi=1, n
j=1, n

are OLS-estimators of {aij}i=1, nj=1, n. Then diagonal elements of A can be

corrected. The models⎧⎪⎪⎪⎨⎪⎪⎪⎩
∆x1 − aav12x2 − · · ·− aav1nxn = a∗10 + a∗11x1 + ε1,

∆x2 − aav12x1 − · · ·− aav2nxn = a∗20 + a∗22x1 + ε2,

· · ·
∆xn − aav1nx1 − · · ·− aavn−1, nxn−1 = a∗n0 + a∗nnx1 + εn,

(22)

may be OLS estimated. Here {εi}i=1, n are random disturbances.
Thus the estimated model corresponding to (4) takes the form of⎧⎪⎪⎪⎨⎪⎪⎪⎩

∆x1 = a11x1 + a
av
12x2 + · · ·+ aav1nxn + v1,

∆x2 = a
av
12x1 + a22x2 + · · ·+ aav2nxn + v2,

· · ·
∆xn = a

av
1nx1 + a

av
2nx2 + · · ·+ annxn + vn,

(23)

where {vi|vi = εi + ai0} are the coordinates of the vector-valued function u(t); {ai0}i=1, n
are the OLS-estimators of {a∗i0}.
Coefficient of determination R2 should be computed for every regression from (21)

and (22), as well as significance of estimated coefficients should be verified. If regression
analysis [22] indicates essential insignificancy of a state variable, then it may be excluded
from the model with further recomputation.
In case when the proposed technique gives unsatisfied results concerning R2, some

adjustments are necessary. Particularly, (22) should be transformed into⎧⎪⎪⎪⎨⎪⎪⎪⎩
∆x1 − λ12x2 − · · ·− λ1nxn = a

∗
10 + a

∗
11x1 + ε1,

∆x2 − λ21x1 − · · ·− λ2nxn = a
∗
10 + a

∗
11x1 + ε1,

· · ·
∆xn − λn1x1 − · · ·− λn, n−1xn−1 = a∗n0 + a

∗
nnx1 + εn,

(24)

where adjustment parameters {λij}i=1, nj=1, n are iteratively chosen from the interval [aij, aji].
This arbitrariness in (24) is aimed at improving the resulted models (for example, increas-
ing of coefficient of determination R2).
Once high values of coefficients of determination R2 for regressions (23) have been

obtained, one can start considering the equation of motion (18), where the elements of A
are the corresponding coefficients of model (23) and vector-valued function v(t) states
for input u(t). As it is shown in [15, 20], such an approach provides sufficiently high
simulation and forecast properties of dynamic models.
After matrix A has been fully identified, it enables one to find an analytical solution

of (18). This issue belongs to the class of direct dynamic problems, i.e. to solve matrix
differential equation (18) given A and inputs u(t). Notice: u(t) is defined at discrete
points of time t = 1, 2, . . . , N − 1. In order to obtain continuous control, u(t) may be
presented as a kinked line.
When considering real dynamic systems, it appears that state variables are monoto-

nous over time. For instance, the main macroeconomic indices are increasing for developed
countries. (Then ẋ(t) > 0, t ∈ [t0, t1].) In such cases matrix A may be either positive or
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negative definite. The latter allows our solving system of ODE (18) analytically. Specif-
ically, if A is negative definite, then the left boundary condition x(t0) = x0 is given and
the solution is found in direct time:

x(t) = eAtx0 +

tZ
0

eA(t−τ)u(τ) dτ ; (25)

if A is positive definite, then the right boundary condition x(t1) = x1 is given and the
solution is found in inverse time:

x(t) = eA(t−t1)x1 +

tZ
t1

eA(t−τ)u(τ) dτ. (26)

Solutions (25) and (26) are stable [3] and they may be employed for simulation and
forecast.
Now we proceed to system potential (3) specification and identification. For this we

elaborate and employ an energy approach. It is based on potential G basis decomposition
as an element of energy space. The following assumption and theorem are essential for
further discussion.
Let model (2) be an autonomous system and the impact of all components on G(· · · )

be characterized with the corresponding quadratic forms:

QP1(x) =
1

2
xtrP1x, QP2(ẋ) =

1

2
ẋtrP2ẋ, QP3(u) =

1

2
utrP3u.

The quadratic form QP1(x) states for potential energy of the open lag model (18) at
time t, QP2(ẋ) for kinetic energy of the open lag model (18) at time t, and, at last, QP3(u)
for energy of external inputs.
Then considering G as an element of energy space and energies QP1(x), QP2(ẋ), QP3(u)

as components of the basis of this space, one can arrive at the following basis decompo-
sition of potential G:

G = C0 + C1
1

2
QP1(x) + C2

1

2
QP2(ẋ) + C3

1

2
QP3(u), (27)

where C0, C1, C2 and C3 are unknown constants.
Generally, the matrices P1, P2 and P3 are hard to identify. Nevertheless, further con-

siderations will substantially simplify this issue.

Theorem 3.1. The identity

1

2
xtrAx+

1

2
ẋtrA−1ẋ− 1

2
utrA−1u ≡ 1

2

d

dt
(xtrx) (28)

holds true, if and only if the law of motion is described by (18).

Proof: It follows from (18) that

1

2
utrA−1u ≡ 1

2
(ẋtr − xtrA)A−1(ẋ− Ax) ≡ 1

2
xtrAx+

1

2
ẋtrA−1ẋ− 1

2
ẋtrx− 1

2
xtrẋ.

Notice: ẋtrx ≡ xtrẋ ≡ d
dt
(xtrx). Then formula (28) obviously arises. Apparently, the

equation of motion (18) is also derived from (28).
Therefore, it follows from the energy equality that P1, P2 and P3 may be reasonably

identified as A, A−1 and A−1 respectively. Finally, the unknown coefficients from (27) are
to be estimated. Employing OLS, we arrive at the identified model of system potential:

Ĝ = Ĉ0 + Ĉ1
1

2
(xtrAx) + Ĉ2

1

2
(∆xtrA−1∆x) + Ĉ3

1

2
(utrA−1u), (29)



8 O. M. NAZARENKO AND D. V. FILCHENKO

where Ĉ0, Ĉ1, Ĉ2 and Ĉ3 are estimated coefficients. They may be obtained by solving the
following matrix equation:⎛⎜⎜⎝
1 1

2
QA(x)|t=1 1

2
QA−1(∆x)|t=1 1

2
QA−1(u)|t=1

1 1
2
QA(x)|t=2 1

2
QA−1(∆x)|t=2 1

2
QA−1(u)|t=2

...
...

...
...

1 1
2
QA(x)|t=N−1 1

2
QA−1(∆x)|t=N−1 1

2
QA−1(u)|t=N−1

⎞⎟⎟⎠
⎛⎜⎜⎝
Ĉ0
Ĉ1
Ĉ2
Ĉ3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
G1
G2
...

GN−1

⎞⎟⎟⎠ ,
where ut = xt − xt−1 − Axt for t = 1, 2, . . . , N − 1.
4. Numerical Experiment. This section deals with numerical application of proposed
identification techniques to macroeconomic modeling for USA, Japan and a number of
EU countries.
In all models we use GDP as potential of macroeconomic system. This specification

follows from the fact that GDP accumulates all information of the system’s production ca-
pacity and is considered as one of the most essential macroeconomic indicator. As to state
variables specification, it generally depends on the results of correlation and regression
analysis. We will use fixed capital stock, property costs, labor force and final consump-
tion expenditures as initial candidates for this role though. All statistical information is
available on Internet (see, for example, http://epp.eurostat.ec.europa.eu).

4.1. A model of investment development. Let us consider an open macroeconomic
system that consists of n−1 industries. As experiment reveals [15] state variables of such
a system are fixed capital stocks {xi}i=1, n−1 per industry and foreign debt xn.
The rate of change ẋi(t) of fixed capital is the value of net investments into the ith

industry for i = 1, 2, . . . , n− 1. The rate of change ẋn of foreign debt is the value of its
gross accumulation. These values are used for the analysis of investment activity in eco-
nomic theory [10], but mainly as ratios to gross output (e.g. GDP) rather than in absolute
numbers. Therefore, specifying vector-valued function f(· · · ) as a product of dimension-
less value u(t) and GDP G, we obtain a model of non-stationary accelerator (7). In this
case economic interpretation of control variables is also obvious. Functions {uj(t)}j=1, n−1
may be considered as indices of investment activity per industry and un(t) as an index of
export-import non balance.
Approbation of (7) is based on two-industrial Danish economy in 1966-1997. Let the

first industry consist of manufacturing and agricultural branches and the second one of
services.
Using (10) Denmark’s GDP is specified with two regressors: fixed capital stock x1+ x2

and foreign debt x3. The obtained OLS estimations are:

lnG
(s.e.)

= 0.3859
(0.3195)

+ 0.8145
(0.0428)

ln (x1 + x2) + 0.1120
(0.0252)

lnx3, R
2 = 0.9968, (30)

where numbers in brackets are standard errors of regression coefficients. All coefficients,
except the first one, appear to be statistically significant (we use Student’s test for the
number of freedom l = 29 and level of significance α = 5%). Such results are quite natural
in econometric literature [6] when using log-linear functional forms for the regression
analysis and with high coefficient of determination R2 imply that the model is quite
fulfilled with specified factors. It is also evident that the impact of foreign debt on
Denmark’s GDP was not essential in the analyzed period of time (although it appeared
to be statistically significant). Another conclusion is that the diminishing return to scale
was present (a1 + a2 = 0.9265 < 1) at that time.
The exponential form of the estimated log-linear production function is

G(x1 + x2, x3) = 1.4710(x1 + x2)
0.8145x3

0.1120.



PARAMETRIC IDENTIFICATION OF STATE-SPACE DYNAMIC SYSTEMS 9

Let us now turn to the polynomial (12) identification. The results of OLS estimation
are given below:

u1(t)
(s.e.)

= 0.1469
(0.0118)

− 0.0037
(0.0005)

t, u2(t)
(s.e.)

= 0.2219
(0.0448)

− 0.0066
(0.0043)

t+ 0.000042
(0.0001)

t2

for difference identification scheme (13) and

u1(t)
(s.e.)

= 0.1543
(0.0033)

− 0.0041
(0.0002)

t, u2(t)
(s.e.)

= 0.2278
(0.0167)

− 0.0062
(0.0019)

t

for integral identification scheme (15). All coefficients in estimated polynomials appear to
be statistically significant and provide the high level of approximation for state variables
x1 and x2. Particularly coefficients of determination R

2 are 0.9979 and 0.9966 for scheme
(13) and 0.9986 and 0.9982 for scheme (15).
As experiments reveal, optimal order kj for each of polynomials (12) appears to be

equal to 1 or 2. Interval forecasts (16) for state variables x1 and x2 are 1197674.539 ±
20073.928 and 1800344.834 ± 36369.454 for scheme (13) versus 11883527.018 ± 34599.568
and 1764626.422 ± 56578.455 for scheme (15). Obviously confidence intervals for the
forecasts based on difference identification algorithm are narrower: 1.68% and 2.02%
versus 2.92% and 3.21% (as percentages of point forecasts). The results obtained in this
subsection confirm that difference identification scheme (13) is more preferable for forecast
purposes. Integral identification scheme (15) ensures better simulation properties.

4.2. A Gradient macroeconomic model. Let macroeconomic system be an aggregate
market of n participants (players), which impact a system potential G acting either within
competitive or cooperative framework. Let x(t) be a vector of n strategies (factors)
available for each of n players. All strategies can be divided into those that impact G
positively and those that impact it negatively. Thus a potential G accumulates aggregate
results of players’ interaction.
Following [20], the aforementioned situation may be described using gradient model (8).

Therefore coordinates of u(t) may be considered as rates of each players investing into
development of the corresponding factor. Then ∂G

∂ x
is a vector of investment efficiencies.

In this sub-section we will also employ Danish economy as an example. As experiment
reveals [20], it is sufficient to consider three aggregate players: producers (firms) oper-
ated with fixed capital consumption (x1), households operated with labor force (x2) and
government operated with final consumption expenditures (x3).
OLS-estimation of unknown parameters in linearized production function (11) gives:

lnG
(s.e.)

= −1.714
(1.538)

+ 0.450
(0.162)

ln x1 + 0.434
(0.183)

lnx2 + 0.487
(0.177)

ln x3, R
2 = 0.9986, (31)

or in the form of (10):

G(x1, x2, x3) = 0.180 x1
0.450 x2

0.434 x3
0.487.

Notice that all coefficients in (31) are statistically significant with α = 0.05, the level of
significance. Therefore it can be employed for modeling of Danish macroeconomic system.
It is also derived from (31) that all factors impact GDP positively and more or less evenly
provide increasing return to the scale (a1 + a2 + a3 = 1.371 > 1).
Using difference scheme (13) for polynomials (12) identification, one can obtain:

u1(t)
(s.e.)

= 389.526
(25.735)

, u2(t)
(s.e.)

= 0.466
(0.201)

− 0.018
(0.0082)

t,

u3(t)
(s.e.)

= 4937.955
(1471.323)

+ 2504.817
(1107.170)

t− 503.835
(218.916)

t2 + 26.465
(11.831)

t3.
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Table 1. The results of modeling for USA, Japan, France, Italy, Nether-
lands, and Finland

Country Fixed capital consumption Labor force Property costs
R2 2004 R2 2004 R2 2004

For difference identification scheme
USA 0.937 1036859.5 0.924 13808 0.937 8323649.7

-1.89; 2.74 1.41; 2.68 2.86; 4.18
Japan 0.930 910333.3 - - 0.902 2709948.7

-3.04; 3.12 3.76; 4.39
France 0.960 209874.3 0.889 25418 0.987 1339665.2

1.30; 2.31 -1.79; 2.05 -0.58; 1.53
Italy - - 0.940 24583 0.985 1079854.7

1.30; 2.31 -1.43; 2.35 0.93; 2.22
Netherlands 0.945 74377.4 - - 0.965 364853.0

-1.26; 2.92 -1.26; 2.12
Finland 0.932 22237.0 0.864 2398 - -

-0.73; 1.78 -1.38; 2.03
For integral identification scheme

USA 0.962 1043251.9 0.966 137283.8 0.970 8356617.2
-2.49; 3.38 2.00; 3.03 -3.24; 4.67

Japan 0.953 921095.2 - - 0.923 2917384.3
-4.17; 4.55 -4.60; 5.21

France 0.987 211839.9 0.927 25009.5 0.994 1310524.7
0.36; 2.44 -0.19; 2.21 1.63; 2.03

Italy - - 0.963 23495.9 0.991 1059082.1
1.30; 2.31 3.13; 3.74 2.90; 3.45

Netherlands 0.969 72299.1 - - 0.982 360944.2
1.57; 3.43 -0.19; 2.63

Finland 0.981 22567.1 0.946 2419.1 - -
2.19; 3.52 2.23; 3.65

Interval forecasts (16) of state variables are 31757.1 ± 594.2 for fixed capital consump-
tion, 2749 ± 53 for labor force and 147740.5 ± 3670.1 for final consumption expenditures.
In its turn, integral identification scheme (15) results in:

u1(t)
(s.e.)

= 355.147
(17.379)

+ 8.169
(2.796)

t u2(t)
(s.e.)

= −2.069
(0.288)

+ 1.104
(0.107)

t,−0.0859
(0.0083)

t2

u3(t)
(s.e.)

= 7266.0158
(146.178)

.

In this case interval forecasts (16) of state variables are 32327.9 ± 934.7 for fixed capital
consumption, 2675 ± 99 for labor force and 146293.8 ± 4581.1 for final consumption
expenditures.
As experiments reveal, optimal order kj for each of polynomials (12) appears to range

from 0 to 3. Obviously, confidence intervals for the forecasts based on difference identifi-
cation algorithm are narrower: 1.87%, 1.93% and 2.48% versus 4.52%, 5.89% and 6.31%
(as percentages of point forecasts). All coefficients in estimated polynomials appear to be
statistically significant, providing the high level of approximation for state variables x1,
x2 and x3. Computations of coefficients of determination R

2 give values 0.99414, 0.91348,
0.99841 for scheme (13) and 0.99832, 0.98068, 0.99517 for scheme (15).
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The results of similar modeling for USA, Japan, France, Italy, Netherlands and Finland
are presented in Table 1. It consists of forecast values (numbers from above) and confi-
dence intervals as percentages of point forecasts (numbers from below). System potential
G was initially specified with three factors. If it appeared that G contained insignifi-
cant coefficients, then the recomputations would be held with corresponding two factors.
Table 1 as well as aforementioned results coincided with those from Subsection 4.1: dif-
ference identification scheme (13) is more preferable for prospective analysis. Integral
identification scheme (15) has better descriptive properties though.
The adequacy of the results from Subsections 4.1 and 4.2 was verified using Gauss-

Markov assumptions for classical regressions [22]. As computations [15, 20] reveal, only
the assumption of non-autocorrelation failed. The presence of autocorrelation in models
(13) and (15) is considered admissible, while input u(t) is approximated by polynomials
depended on time [6, 14].

4.3. An energy macroeconomic model. This subsection deals with approbation of
stationary LQ model (18), (27) identification techniques. As before, it is proposed to
investigate Denmark’s economy. Let the dynamic system (18), (27) be specified with
fixed capital stock (x1), property costs (x2), and final consumption expenditures (x3). All
data are considered as ratios to initial time.
We obtain acceptable results right after the first iteration, when applying the proposed

iterative procedure of matrix A identification (see Subsection 3.2):

A =

⎛⎝ 0.2042 −0.2974 −0.0421
−0.2974 0.7154 −0.1601
−0.0421 −0.1601 0.2527

⎞⎠ .
All regressions from (23) appear to have high coefficients of determination R2 (97-

98%). This argues in favor of models correspondence with real trends in macroeconomic
dynamics.
Then, we obtain identified system potential (29), using OLS estimation:

Ĝ
(s.e.)

= 0.74
(0.11)

+ 0.53
(0.14)

QA(x) + 0.39
(0.14)

QA−1(ẋ)− 0.64
(0.22)

QA−1(u). (32)

According to Student’s criterion with the level of significance α = 0.05, all components
from specified energy space impact system potential (GDP) significantly. Coefficient of
determination R2 equal to 98% also argues in favor of proposed model. Figure 1(a)
demonstrates real (designated with dots) and simulated (curves) values of potential G
dynamics. We may also make a forecast. We obtain a point forecast 3.02 and its standard
error δ = 0.05, while extrapolating (32) for one period ahead.
Our investigation concerns dynamics of stable development. All eigenvalues of A are

positive: λ1 = 0.8787, λ2 = 0.0166, λ3 = 0.2770. Therefore A is defined positive. There-
fore, in order to verify simulation and forecast properties, the formula (26) can be em-
ployed. Here are confidence intervals of forecasts for x1, x2 and x3: 4.95 ± 0.20, 3.32 ±
0.09 and 3.04 ± 0.08.
Figure 1 demonstrates real and simulated vales of fixed capital stock (Figure 1(b)),

property costs (Figure 1(c)), and final consumption expenditures (Figure 1(d)). It reveals
high simulation quality of the models and thus efficiency of the proposed identification
techniques. The sensitivity of output to the inputs has been tested using the analytical
solution (26) and econometric model (20). Both lead to the same results and indicates
the stability of obtained models.
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(a) G(t) (b) x1(t)

(c) x2(t) (d) x3(t)

Figure 1. Real and simulated values of (a) system potential G, (b) fixed
capital consumption x1, (c) property costs x2 and (d) consumption expen-
ditures x3

5. Conclusions. A series of time-domain parametric identification techniques for a num-
ber of dynamic systems have been presented. On the one hand, two identification algo-
rithms for models of non-stationary accelerator and gradient systems have been elabo-
rated. Difference identification scheme has appeared to be more applicable for forecast
analysis, while integral one has demonstrated better simulation properties. System poten-
tial for these models should be identified primarily. On the other hand, a new approach to
specification and identification of stationary LQ systems has been established. In this case
the equation of motion should be identified primarily. A parametric iterative procedure
has been proposed for this purpose. It is based on analogues between overdetermined
equations and regressions. System potential has been specified as an element of energy
space with the components: potential, kinetic, and energy of inputs. The energy equality
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has also been established. It has considerably simplified identification procedures. All
identification techniques has been approbated using real statistical data for models of
macroeconomic dynamics. As experiment reveals, all models have demonstrated good
simulation, forecast properties and good correspondence with reality. Concerning iden-
tification time-span as a learning domain, further investigations may be connected with
optimization problems in future periods.
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